Baohong Li, Hao Zhang, Ashraf Uz Zaman Robin, Qianqian Yu
{"title":"基于深层局部特征自动识别臀面印模","authors":"Baohong Li, Hao Zhang, Ashraf Uz Zaman Robin, Qianqian Yu","doi":"10.1016/j.displa.2024.102822","DOIUrl":null,"url":null,"abstract":"<div><p>Breech face impressions are an essential type of physical evidence in forensic investigations. However, their surface morphology is complex and varies based on the machining method used on the gun’s breech face, making traditional handcrafted local feature-based methods exhibit high false rates and are unsuitable for striated impressions. We proposed a deep local feature-based method for firearm identification utilizing Detector-Free Local Feature Matching with Transformers (LoFTR). This method removes the module of feature point detection and directly utilizes self and cross-attention layers in the Transformer to transform the convolved coarse-level feature maps into a series of dense feature descriptors. Subsequently, matches with high confidence scores are filtered based on the score matrix calculated from the dense descriptors. Finally, the screened initial matches are refined into the convolved fine-level features, and a correlation-based approach is used to obtain the exact location of the match. Validation tests were conducted using three authoritative sets of the breech face impressions datasets provided by the National Institute of Standards and Technology (NIST). The validation results show that, compared with the traditional handcrafted local-feature based methods, the proposed method in this paper yields a lower identification error rate. Notably, the method can not only deal with granular impressions, but can also be applied to the striated impressions. The results indicate that the method proposed in this paper can be utilized for comparative analysis of breech face impressions, and provide a new automatic identification method for forensic investigations.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"85 ","pages":"Article 102822"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic identification of breech face impressions based on deep local features\",\"authors\":\"Baohong Li, Hao Zhang, Ashraf Uz Zaman Robin, Qianqian Yu\",\"doi\":\"10.1016/j.displa.2024.102822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Breech face impressions are an essential type of physical evidence in forensic investigations. However, their surface morphology is complex and varies based on the machining method used on the gun’s breech face, making traditional handcrafted local feature-based methods exhibit high false rates and are unsuitable for striated impressions. We proposed a deep local feature-based method for firearm identification utilizing Detector-Free Local Feature Matching with Transformers (LoFTR). This method removes the module of feature point detection and directly utilizes self and cross-attention layers in the Transformer to transform the convolved coarse-level feature maps into a series of dense feature descriptors. Subsequently, matches with high confidence scores are filtered based on the score matrix calculated from the dense descriptors. Finally, the screened initial matches are refined into the convolved fine-level features, and a correlation-based approach is used to obtain the exact location of the match. Validation tests were conducted using three authoritative sets of the breech face impressions datasets provided by the National Institute of Standards and Technology (NIST). The validation results show that, compared with the traditional handcrafted local-feature based methods, the proposed method in this paper yields a lower identification error rate. Notably, the method can not only deal with granular impressions, but can also be applied to the striated impressions. The results indicate that the method proposed in this paper can be utilized for comparative analysis of breech face impressions, and provide a new automatic identification method for forensic investigations.</p></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"85 \",\"pages\":\"Article 102822\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938224001860\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001860","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Automatic identification of breech face impressions based on deep local features
Breech face impressions are an essential type of physical evidence in forensic investigations. However, their surface morphology is complex and varies based on the machining method used on the gun’s breech face, making traditional handcrafted local feature-based methods exhibit high false rates and are unsuitable for striated impressions. We proposed a deep local feature-based method for firearm identification utilizing Detector-Free Local Feature Matching with Transformers (LoFTR). This method removes the module of feature point detection and directly utilizes self and cross-attention layers in the Transformer to transform the convolved coarse-level feature maps into a series of dense feature descriptors. Subsequently, matches with high confidence scores are filtered based on the score matrix calculated from the dense descriptors. Finally, the screened initial matches are refined into the convolved fine-level features, and a correlation-based approach is used to obtain the exact location of the match. Validation tests were conducted using three authoritative sets of the breech face impressions datasets provided by the National Institute of Standards and Technology (NIST). The validation results show that, compared with the traditional handcrafted local-feature based methods, the proposed method in this paper yields a lower identification error rate. Notably, the method can not only deal with granular impressions, but can also be applied to the striated impressions. The results indicate that the method proposed in this paper can be utilized for comparative analysis of breech face impressions, and provide a new automatic identification method for forensic investigations.
期刊介绍:
Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface.
Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.