用于医学图像分割的形状密度引导 U 网

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-09-03 DOI:10.1016/j.neucom.2024.128534
{"title":"用于医学图像分割的形状密度引导 U 网","authors":"","doi":"10.1016/j.neucom.2024.128534","DOIUrl":null,"url":null,"abstract":"<div><p>Medical image segmentation has achieved impressive results thanks to U-Net or its alternatives. Yet, most existing methods perform segmentation by classifying individual pixels, tending to ignore the shape-intensity prior information. This may yield implausible segmentation results. Besides, the segmentation performance often drops greatly on unseen datasets. One possible reason is that the model is biased towards texture information, which varies more than shape information across different datasets. In this paper, we introduce a novel Shape-Intensity-Guided U-Net (SIG-UNet) for improving the generalization ability of variants of U-Net in segmenting medical images. Specifically, we adopt the U-Net architecture to reconstruct class-wisely averaged images that only contain the shape-intensity information. We then add an extra similar decoder branch with the reconstruction decoder for segmentation, and apply skip fusion between them. Since the class-wisely averaged image has no any texture information, the reconstruction decoder focuses more on shape and intensity features than the encoder on the original image. Therefore, the final segmentation decoder has less texture bias. Extensive experiments on three segmentation tasks of medical images with different modalities demonstrate that the proposed SIG-UNet achieves promising intra-dataset results while significantly improving the cross-dataset segmentation performance. The source code will be publicly available after acceptance.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape-intensity-guided U-net for medical image segmentation\",\"authors\":\"\",\"doi\":\"10.1016/j.neucom.2024.128534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Medical image segmentation has achieved impressive results thanks to U-Net or its alternatives. Yet, most existing methods perform segmentation by classifying individual pixels, tending to ignore the shape-intensity prior information. This may yield implausible segmentation results. Besides, the segmentation performance often drops greatly on unseen datasets. One possible reason is that the model is biased towards texture information, which varies more than shape information across different datasets. In this paper, we introduce a novel Shape-Intensity-Guided U-Net (SIG-UNet) for improving the generalization ability of variants of U-Net in segmenting medical images. Specifically, we adopt the U-Net architecture to reconstruct class-wisely averaged images that only contain the shape-intensity information. We then add an extra similar decoder branch with the reconstruction decoder for segmentation, and apply skip fusion between them. Since the class-wisely averaged image has no any texture information, the reconstruction decoder focuses more on shape and intensity features than the encoder on the original image. Therefore, the final segmentation decoder has less texture bias. Extensive experiments on three segmentation tasks of medical images with different modalities demonstrate that the proposed SIG-UNet achieves promising intra-dataset results while significantly improving the cross-dataset segmentation performance. The source code will be publicly available after acceptance.</p></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224013055\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224013055","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于 U-Net 或其替代方法的出现,医学图像分割取得了令人瞩目的成果。然而,大多数现有方法都是通过对单个像素进行分类来进行分割,往往忽略了形状-强度先验信息。这可能会产生难以置信的分割结果。此外,在未见过的数据集上,分割性能往往会大幅下降。其中一个可能的原因是模型偏向于纹理信息,而纹理信息在不同数据集上的变化比形状信息更大。在本文中,我们引入了一种新的形状-密度引导 U-Net (SIG-UNet),以提高 U-Net 变体在医学图像分割中的泛化能力。具体来说,我们采用 U-Net 架构来重建只包含形状强度信息的类平均图像。然后,我们在重建解码器的基础上额外添加一个相似解码器分支进行分割,并在两者之间进行跳转融合。由于类平均图像没有任何纹理信息,因此重建解码器比原始图像上的编码器更关注形状和强度特征。因此,最终的分割解码器的纹理偏差较小。对不同模态医学图像的三个分割任务进行的大量实验表明,所提出的 SIG-UNet 在显著提高跨数据集分割性能的同时,还取得了良好的数据集内效果。源代码将在通过验收后公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape-intensity-guided U-net for medical image segmentation

Medical image segmentation has achieved impressive results thanks to U-Net or its alternatives. Yet, most existing methods perform segmentation by classifying individual pixels, tending to ignore the shape-intensity prior information. This may yield implausible segmentation results. Besides, the segmentation performance often drops greatly on unseen datasets. One possible reason is that the model is biased towards texture information, which varies more than shape information across different datasets. In this paper, we introduce a novel Shape-Intensity-Guided U-Net (SIG-UNet) for improving the generalization ability of variants of U-Net in segmenting medical images. Specifically, we adopt the U-Net architecture to reconstruct class-wisely averaged images that only contain the shape-intensity information. We then add an extra similar decoder branch with the reconstruction decoder for segmentation, and apply skip fusion between them. Since the class-wisely averaged image has no any texture information, the reconstruction decoder focuses more on shape and intensity features than the encoder on the original image. Therefore, the final segmentation decoder has less texture bias. Extensive experiments on three segmentation tasks of medical images with different modalities demonstrate that the proposed SIG-UNet achieves promising intra-dataset results while significantly improving the cross-dataset segmentation performance. The source code will be publicly available after acceptance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
An efficient re-parameterization feature pyramid network on YOLOv8 to the detection of steel surface defect Editorial Board Multi-contrast image clustering via multi-resolution augmentation and momentum-output queues Augmented ELBO regularization for enhanced clustering in variational autoencoders Learning from different perspectives for regret reduction in reinforcement learning: A free energy approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1