用于离心泵的模块化软传感器

Q3 Engineering IFAC-PapersOnLine Pub Date : 2024-01-01 DOI:10.1016/j.ifacol.2024.08.319
{"title":"用于离心泵的模块化软传感器","authors":"","doi":"10.1016/j.ifacol.2024.08.319","DOIUrl":null,"url":null,"abstract":"<div><p>Soft sensors experience an increasing interest in recent years, as they can replace expensive hardware meters and the required embedded computing hardware has become cheap and powerful. We report results for the implementation of a soft sensor for the flow rate estimation in centrifugal pumps that achieves root mean square errors of about 5%. The proposed soft sensor is based on generic models for the drive and hydraulic part of the pump to ensure widespread applicability. We show the soft sensor and the models it is based on can be parametrized with simple measurements. All theoretical considerations are corroborated with measurements on a real industrial pump in a laboratory setup. The results show that the proposed soft sensor is capable of providing reliable flow rate estimates in spite of plant model mismatch and uncertain hardware components.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324010620/pdf?md5=bfa9d3fdc97af3048f1aebbe0f22e76a&pid=1-s2.0-S2405896324010620-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Modular Soft Sensor for Centrifugal Pumps\",\"authors\":\"\",\"doi\":\"10.1016/j.ifacol.2024.08.319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soft sensors experience an increasing interest in recent years, as they can replace expensive hardware meters and the required embedded computing hardware has become cheap and powerful. We report results for the implementation of a soft sensor for the flow rate estimation in centrifugal pumps that achieves root mean square errors of about 5%. The proposed soft sensor is based on generic models for the drive and hydraulic part of the pump to ensure widespread applicability. We show the soft sensor and the models it is based on can be parametrized with simple measurements. All theoretical considerations are corroborated with measurements on a real industrial pump in a laboratory setup. The results show that the proposed soft sensor is capable of providing reliable flow rate estimates in spite of plant model mismatch and uncertain hardware components.</p></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324010620/pdf?md5=bfa9d3fdc97af3048f1aebbe0f22e76a&pid=1-s2.0-S2405896324010620-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324010620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324010620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

近年来,软传感器越来越受到人们的关注,因为它们可以取代昂贵的硬件仪表,而且所需的嵌入式计算硬件也变得便宜且功能强大。我们报告了用于离心泵流量估算的软传感器的实施结果,该传感器的均方根误差约为 5%。拟议的软传感器基于泵的驱动和液压部分的通用模型,以确保广泛的适用性。我们表明,软传感器及其所基于的模型可以通过简单的测量进行参数化。所有理论考虑都与在实验室设置中对实际工业泵的测量结果相吻合。结果表明,尽管存在设备模型不匹配和硬件组件不确定的情况,所提出的软传感器仍能提供可靠的流量估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modular Soft Sensor for Centrifugal Pumps

Soft sensors experience an increasing interest in recent years, as they can replace expensive hardware meters and the required embedded computing hardware has become cheap and powerful. We report results for the implementation of a soft sensor for the flow rate estimation in centrifugal pumps that achieves root mean square errors of about 5%. The proposed soft sensor is based on generic models for the drive and hydraulic part of the pump to ensure widespread applicability. We show the soft sensor and the models it is based on can be parametrized with simple measurements. All theoretical considerations are corroborated with measurements on a real industrial pump in a laboratory setup. The results show that the proposed soft sensor is capable of providing reliable flow rate estimates in spite of plant model mismatch and uncertain hardware components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
期刊最新文献
Torque-Minimizing Control Allocation for Overactuated Quadrupedal Locomotion Mesh Refinement with Early Termination for Dynamic Feasibility Problems Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands Sample Complexity of the Sign-Perturbed Sums Identification Method: Scalar Case* Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1