{"title":"印度西部帕尔加尔地震群震源区高频地震波的衰减机制","authors":"","doi":"10.1016/j.jseaes.2024.106306","DOIUrl":null,"url":null,"abstract":"<div><p>We study attenuation of seismic waves in the source area of Palghar swarm in western part of India. The intrinsic and scattering loss are separated using the Wennerberg method in the assumption of co-located source and receiver. The coda-normalization and single back-scattering model of coda wave generation are used for determining <em>Q</em> factors describing attenuation for body (<em>Q</em><sub>P</sub> and <em>Q</em><sub>S</sub>) and coda (<em>Q</em><sub>C</sub>) wave, respectively. The data set includes 1419 high-quality earthquakes (1.5 < M<sub>L</sub><4.7) during intense swarm from 2019 to 2022 recorded by six stations in the Palghar region. Analysis is performed at five central frequencies 1.5, 3, 6, 12, and 24 Hz for varying lapse time windows of 5 to 40 s. The frequency-dependent P- and S-wave attenuations are expressed as <span><math><mrow><msup><mrow><msub><mi>Q</mi><mi>P</mi></msub><mo>=</mo><mrow><mfenced><mrow><mn>8.7</mn><mo>±</mo><mn>1</mn></mrow></mfenced></mrow><mi>f</mi></mrow><mrow><mfenced><mrow><mn>0.85</mn><mo>±</mo><mn>0.01</mn></mrow></mfenced></mrow></msup></mrow></math></span> and <span><math><mrow><msup><mrow><msub><mi>Q</mi><mi>S</mi></msub><mo>=</mo><mrow><mfenced><mrow><mn>28.4</mn><mo>±</mo><mn>0.4</mn></mrow></mfenced></mrow><mi>f</mi></mrow><mrow><mfenced><mrow><mn>0.87</mn><mo>±</mo><mn>0.004</mn></mrow></mfenced></mrow></msup></mrow></math></span>, respectively in 1.5–24 Hz. The spatially averaged frequency-dependent coda <em>Q</em><sub>C</sub>(<em>f</em>) relations are <span><math><mrow><msup><mrow><msub><mi>Q</mi><mi>C</mi></msub><mo>=</mo><mrow><mfenced><mrow><mn>26.9</mn><mo>±</mo><mn>13</mn></mrow></mfenced></mrow><mi>f</mi></mrow><mrow><mfenced><mrow><mn>0.93</mn><mo>±</mo><mn>0.04</mn></mrow></mfenced></mrow></msup></mrow></math></span> and <span><math><mrow><msup><mrow><msub><mi>Q</mi><mi>C</mi></msub><mo>=</mo><mrow><mfenced><mrow><mn>138.8</mn><mo>±</mo><mn>41</mn></mrow></mfenced></mrow><mi>f</mi></mrow><mrow><mfenced><mrow><mn>1.08</mn><mo>±</mo><mn>0.05</mn></mrow></mfenced></mrow></msup></mrow></math></span> for 5 and 40 s, respectively. The S-waves attenuate faster than the coda waves in 1.5–24 Hz. The <em>Q<sub>P</sub>/Q<sub>S</sub></em> ratio is greater than unity in the analysed frequencies. Intrinsic attenuation dominates the scattering attenuation in the whole frequency range. Dominant intrinsic absorption with its strong frequency dependence requires the presence of fluids in the shallow crust, as shown from other geophysical methods in the Palghar swarm area. Attenuation mechanisms are found to be similar for other swarm areas worldwide. The attenuation results could be useful while finding the earthquake source parameters to correct the path in the modelling for accurately estimating source scaling relations of swarm-related earthquakes.</p></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The attenuation mechanism of high-frequency seismic waves in the Palghar swarm earthquake source area in Western India\",\"authors\":\"\",\"doi\":\"10.1016/j.jseaes.2024.106306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study attenuation of seismic waves in the source area of Palghar swarm in western part of India. The intrinsic and scattering loss are separated using the Wennerberg method in the assumption of co-located source and receiver. The coda-normalization and single back-scattering model of coda wave generation are used for determining <em>Q</em> factors describing attenuation for body (<em>Q</em><sub>P</sub> and <em>Q</em><sub>S</sub>) and coda (<em>Q</em><sub>C</sub>) wave, respectively. The data set includes 1419 high-quality earthquakes (1.5 < M<sub>L</sub><4.7) during intense swarm from 2019 to 2022 recorded by six stations in the Palghar region. Analysis is performed at five central frequencies 1.5, 3, 6, 12, and 24 Hz for varying lapse time windows of 5 to 40 s. The frequency-dependent P- and S-wave attenuations are expressed as <span><math><mrow><msup><mrow><msub><mi>Q</mi><mi>P</mi></msub><mo>=</mo><mrow><mfenced><mrow><mn>8.7</mn><mo>±</mo><mn>1</mn></mrow></mfenced></mrow><mi>f</mi></mrow><mrow><mfenced><mrow><mn>0.85</mn><mo>±</mo><mn>0.01</mn></mrow></mfenced></mrow></msup></mrow></math></span> and <span><math><mrow><msup><mrow><msub><mi>Q</mi><mi>S</mi></msub><mo>=</mo><mrow><mfenced><mrow><mn>28.4</mn><mo>±</mo><mn>0.4</mn></mrow></mfenced></mrow><mi>f</mi></mrow><mrow><mfenced><mrow><mn>0.87</mn><mo>±</mo><mn>0.004</mn></mrow></mfenced></mrow></msup></mrow></math></span>, respectively in 1.5–24 Hz. The spatially averaged frequency-dependent coda <em>Q</em><sub>C</sub>(<em>f</em>) relations are <span><math><mrow><msup><mrow><msub><mi>Q</mi><mi>C</mi></msub><mo>=</mo><mrow><mfenced><mrow><mn>26.9</mn><mo>±</mo><mn>13</mn></mrow></mfenced></mrow><mi>f</mi></mrow><mrow><mfenced><mrow><mn>0.93</mn><mo>±</mo><mn>0.04</mn></mrow></mfenced></mrow></msup></mrow></math></span> and <span><math><mrow><msup><mrow><msub><mi>Q</mi><mi>C</mi></msub><mo>=</mo><mrow><mfenced><mrow><mn>138.8</mn><mo>±</mo><mn>41</mn></mrow></mfenced></mrow><mi>f</mi></mrow><mrow><mfenced><mrow><mn>1.08</mn><mo>±</mo><mn>0.05</mn></mrow></mfenced></mrow></msup></mrow></math></span> for 5 and 40 s, respectively. The S-waves attenuate faster than the coda waves in 1.5–24 Hz. The <em>Q<sub>P</sub>/Q<sub>S</sub></em> ratio is greater than unity in the analysed frequencies. Intrinsic attenuation dominates the scattering attenuation in the whole frequency range. Dominant intrinsic absorption with its strong frequency dependence requires the presence of fluids in the shallow crust, as shown from other geophysical methods in the Palghar swarm area. Attenuation mechanisms are found to be similar for other swarm areas worldwide. The attenuation results could be useful while finding the earthquake source parameters to correct the path in the modelling for accurately estimating source scaling relations of swarm-related earthquakes.</p></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367912024003018\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024003018","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The attenuation mechanism of high-frequency seismic waves in the Palghar swarm earthquake source area in Western India
We study attenuation of seismic waves in the source area of Palghar swarm in western part of India. The intrinsic and scattering loss are separated using the Wennerberg method in the assumption of co-located source and receiver. The coda-normalization and single back-scattering model of coda wave generation are used for determining Q factors describing attenuation for body (QP and QS) and coda (QC) wave, respectively. The data set includes 1419 high-quality earthquakes (1.5 < ML<4.7) during intense swarm from 2019 to 2022 recorded by six stations in the Palghar region. Analysis is performed at five central frequencies 1.5, 3, 6, 12, and 24 Hz for varying lapse time windows of 5 to 40 s. The frequency-dependent P- and S-wave attenuations are expressed as and , respectively in 1.5–24 Hz. The spatially averaged frequency-dependent coda QC(f) relations are and for 5 and 40 s, respectively. The S-waves attenuate faster than the coda waves in 1.5–24 Hz. The QP/QS ratio is greater than unity in the analysed frequencies. Intrinsic attenuation dominates the scattering attenuation in the whole frequency range. Dominant intrinsic absorption with its strong frequency dependence requires the presence of fluids in the shallow crust, as shown from other geophysical methods in the Palghar swarm area. Attenuation mechanisms are found to be similar for other swarm areas worldwide. The attenuation results could be useful while finding the earthquake source parameters to correct the path in the modelling for accurately estimating source scaling relations of swarm-related earthquakes.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.