{"title":"系统审查遥感技术在绘制树木一级森林病虫害地图中的应用","authors":"Mthembeni Mngadi , Ilaria Germishuizen , Onisimo Mutanga , Rowan Naicker , Wouter H. Maes , Omosalewa Odebiri , Michelle Schroder","doi":"10.1016/j.rsase.2024.101341","DOIUrl":null,"url":null,"abstract":"<div><p>An increase in the frequency and severity of forest insect pest and disease (FIPD) outbreaks has drastically affected the health and functioning of many forest stands worldwide. This has led to an increased demand for enhanced monitoring techniques with the capabilities to identify individually infected trees before FIPD outbreaks have an opportunity to spread. In this regard, remote sensing has emerged as an indespensible tool with the capacity to map outbreaks at an individual tree level. As FIPD outbreaks have intensified, and with the advancement of monitoring capabilities, there has been a surge of interest within this field. In response to this rapid growth of interest, this review provides a comprehensive assessment of the recent advancements, challenges, and future prospects of the use of remote sensing in mapping FIPD at a tree-level. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, we conducted a systematic review encompassing 87 studies published from 2000 to May 2023. Specifically, we examined various aspects, including taxonomic characteristics, sensor types, and the analytical methods applied. Our findings revealed a signficant increase in research activity in the last few years, with the majority of these studies conducted in Asia, North America, and Europe. The most extensively studied insect pest was the Bark beetle (<em>Ips typographus</em>), whilst Pine wilt disease was found to be the most researched disease. Unmanned aerial vehicles and hyperspectral sensors were favoured by researchers for the majority of monitoring tasks. In terms of analytical methods, random forest (84%), artificial neural network (83%), and convolutional neural networks (93%) were found to have produced the highest levels of model accuracy. Lastly, this review underscores the indispensable role of remote sensing in facilitating the monitoring of FIPD, and identifies specific limitations and potential research gaps that need to be addressed within the field.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101341"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of the application of remote sensing technologies in mapping forest insect pests and diseases at a tree-level\",\"authors\":\"Mthembeni Mngadi , Ilaria Germishuizen , Onisimo Mutanga , Rowan Naicker , Wouter H. Maes , Omosalewa Odebiri , Michelle Schroder\",\"doi\":\"10.1016/j.rsase.2024.101341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An increase in the frequency and severity of forest insect pest and disease (FIPD) outbreaks has drastically affected the health and functioning of many forest stands worldwide. This has led to an increased demand for enhanced monitoring techniques with the capabilities to identify individually infected trees before FIPD outbreaks have an opportunity to spread. In this regard, remote sensing has emerged as an indespensible tool with the capacity to map outbreaks at an individual tree level. As FIPD outbreaks have intensified, and with the advancement of monitoring capabilities, there has been a surge of interest within this field. In response to this rapid growth of interest, this review provides a comprehensive assessment of the recent advancements, challenges, and future prospects of the use of remote sensing in mapping FIPD at a tree-level. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, we conducted a systematic review encompassing 87 studies published from 2000 to May 2023. Specifically, we examined various aspects, including taxonomic characteristics, sensor types, and the analytical methods applied. Our findings revealed a signficant increase in research activity in the last few years, with the majority of these studies conducted in Asia, North America, and Europe. The most extensively studied insect pest was the Bark beetle (<em>Ips typographus</em>), whilst Pine wilt disease was found to be the most researched disease. Unmanned aerial vehicles and hyperspectral sensors were favoured by researchers for the majority of monitoring tasks. In terms of analytical methods, random forest (84%), artificial neural network (83%), and convolutional neural networks (93%) were found to have produced the highest levels of model accuracy. Lastly, this review underscores the indispensable role of remote sensing in facilitating the monitoring of FIPD, and identifies specific limitations and potential research gaps that need to be addressed within the field.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101341\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A systematic review of the application of remote sensing technologies in mapping forest insect pests and diseases at a tree-level
An increase in the frequency and severity of forest insect pest and disease (FIPD) outbreaks has drastically affected the health and functioning of many forest stands worldwide. This has led to an increased demand for enhanced monitoring techniques with the capabilities to identify individually infected trees before FIPD outbreaks have an opportunity to spread. In this regard, remote sensing has emerged as an indespensible tool with the capacity to map outbreaks at an individual tree level. As FIPD outbreaks have intensified, and with the advancement of monitoring capabilities, there has been a surge of interest within this field. In response to this rapid growth of interest, this review provides a comprehensive assessment of the recent advancements, challenges, and future prospects of the use of remote sensing in mapping FIPD at a tree-level. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, we conducted a systematic review encompassing 87 studies published from 2000 to May 2023. Specifically, we examined various aspects, including taxonomic characteristics, sensor types, and the analytical methods applied. Our findings revealed a signficant increase in research activity in the last few years, with the majority of these studies conducted in Asia, North America, and Europe. The most extensively studied insect pest was the Bark beetle (Ips typographus), whilst Pine wilt disease was found to be the most researched disease. Unmanned aerial vehicles and hyperspectral sensors were favoured by researchers for the majority of monitoring tasks. In terms of analytical methods, random forest (84%), artificial neural network (83%), and convolutional neural networks (93%) were found to have produced the highest levels of model accuracy. Lastly, this review underscores the indispensable role of remote sensing in facilitating the monitoring of FIPD, and identifies specific limitations and potential research gaps that need to be addressed within the field.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems