Bárbara C. Benato , Cristian Grosu , Alexandre X. Falcão , Alexandru C. Telea
{"title":"人在回路中:使用分类决策边界图改进伪标签","authors":"Bárbara C. Benato , Cristian Grosu , Alexandre X. Falcão , Alexandru C. Telea","doi":"10.1016/j.cag.2024.104062","DOIUrl":null,"url":null,"abstract":"<div><p>For classification tasks, several strategies aim to tackle the problem of not having sufficient labeled data, usually by automatic labeling or by fully passing this task to a user. Automatic labeling is simple to apply but can fail handling complex situations where human insights may be required to decide the correct labels. Conversely, manual labeling leverages the expertise of specialists but may waste precious effort which could be handled by automatic methods. More specifically, automatic solutions could be improved by combining an active learning loop with manual labeling assisted by visual depictions of a classifier’s behavior. We propose to include the human in the labeling loop by using manual labeling in feature spaces produced by a deep feature annotation (DeepFA) technique. To assist manual labeling, we provide users with visual insights on the classifier’s decision boundaries. Finally, we use the manual and automatically computed labels jointly to retrain the classifier in an active learning (AL) loop scheme. Experiments using a toy and a real-world application dataset show that our proposed combination of manual labeling supported by visualization of decision boundaries and automatic labeling can yield a significant increase in classifier performance with a quite limited user effort.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104062"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-in-the-loop: Using classifier decision boundary maps to improve pseudo labels\",\"authors\":\"Bárbara C. Benato , Cristian Grosu , Alexandre X. Falcão , Alexandru C. Telea\",\"doi\":\"10.1016/j.cag.2024.104062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For classification tasks, several strategies aim to tackle the problem of not having sufficient labeled data, usually by automatic labeling or by fully passing this task to a user. Automatic labeling is simple to apply but can fail handling complex situations where human insights may be required to decide the correct labels. Conversely, manual labeling leverages the expertise of specialists but may waste precious effort which could be handled by automatic methods. More specifically, automatic solutions could be improved by combining an active learning loop with manual labeling assisted by visual depictions of a classifier’s behavior. We propose to include the human in the labeling loop by using manual labeling in feature spaces produced by a deep feature annotation (DeepFA) technique. To assist manual labeling, we provide users with visual insights on the classifier’s decision boundaries. Finally, we use the manual and automatically computed labels jointly to retrain the classifier in an active learning (AL) loop scheme. Experiments using a toy and a real-world application dataset show that our proposed combination of manual labeling supported by visualization of decision boundaries and automatic labeling can yield a significant increase in classifier performance with a quite limited user effort.</p></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104062\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324001973\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001973","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Human-in-the-loop: Using classifier decision boundary maps to improve pseudo labels
For classification tasks, several strategies aim to tackle the problem of not having sufficient labeled data, usually by automatic labeling or by fully passing this task to a user. Automatic labeling is simple to apply but can fail handling complex situations where human insights may be required to decide the correct labels. Conversely, manual labeling leverages the expertise of specialists but may waste precious effort which could be handled by automatic methods. More specifically, automatic solutions could be improved by combining an active learning loop with manual labeling assisted by visual depictions of a classifier’s behavior. We propose to include the human in the labeling loop by using manual labeling in feature spaces produced by a deep feature annotation (DeepFA) technique. To assist manual labeling, we provide users with visual insights on the classifier’s decision boundaries. Finally, we use the manual and automatically computed labels jointly to retrain the classifier in an active learning (AL) loop scheme. Experiments using a toy and a real-world application dataset show that our proposed combination of manual labeling supported by visualization of decision boundaries and automatic labeling can yield a significant increase in classifier performance with a quite limited user effort.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.