{"title":"关于沙夫拉尔与氮化硼和氮化铝类富勒烯笼相互作用的吸附分析的新研究:给药系统","authors":"Saad M Alshahrani","doi":"10.1016/j.chemolab.2024.105206","DOIUrl":null,"url":null,"abstract":"<div><p>This study illustrates the effective control of COVID-19 infection through the adsorption of safranal (SAF) on B<sub>16</sub>N<sub>16</sub> and Al<sub>16</sub>N<sub>16</sub> fullerene-like cages. The SAF adsorption onto the B<sub>16</sub>N<sub>16</sub> and Al<sub>16</sub>N<sub>16</sub> surfaces in gas, water (H<sub>2</sub>O), and chloroform (CHCl<sub>3</sub>) environments were assessed using density functional theory (DFT) and time-dependent (TD) density functional theory methods, analyzing the substrates and their complexes. The Al<sub>16</sub>N<sub>16</sub>/SAF complex exhibited the most negative binding energy and structural stability in the water phase compared to the B<sub>16</sub>N<sub>16</sub>/SAF complex at the PBE0-D3 level. The thermodynamic parameters indicated that the adsorption of SAF onto the fullerene-like cages is exothermic, particularly for the Al<sub>16</sub>N<sub>16</sub>/SAF complex. Additionally, the interaction of SAF with the fullerene-like cages in the water phase is more pronounced than in gas and chloroform environments. The complexes' energy gap (Eg) decreases in all three environments compared to the perfect systems, with a significant reduction of over 21 % in all phases. This substantial decrease in the energy gap suggests that the complexes have increased reactivity and sensitivity to SAF, likely due to a significant change in electronic conductivity. The results of molecular docking indicate that the Al<sub>16</sub>N<sub>16</sub>/SAF complex in the water phase exhibited a strong binding affinity compared to the other compounds studied. These findings suggest that the Al<sub>16</sub>N<sub>16</sub>/SAF complex holds promise as a potential inhibitor for COVID-19 and as a valuable material for biomedical applications and drug delivery systems.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"254 ","pages":"Article 105206"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel investigation on adsorption analysis of safranal interacting with boron nitride and aluminum nitride fullerene-like cages: Drug delivery system\",\"authors\":\"Saad M Alshahrani\",\"doi\":\"10.1016/j.chemolab.2024.105206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study illustrates the effective control of COVID-19 infection through the adsorption of safranal (SAF) on B<sub>16</sub>N<sub>16</sub> and Al<sub>16</sub>N<sub>16</sub> fullerene-like cages. The SAF adsorption onto the B<sub>16</sub>N<sub>16</sub> and Al<sub>16</sub>N<sub>16</sub> surfaces in gas, water (H<sub>2</sub>O), and chloroform (CHCl<sub>3</sub>) environments were assessed using density functional theory (DFT) and time-dependent (TD) density functional theory methods, analyzing the substrates and their complexes. The Al<sub>16</sub>N<sub>16</sub>/SAF complex exhibited the most negative binding energy and structural stability in the water phase compared to the B<sub>16</sub>N<sub>16</sub>/SAF complex at the PBE0-D3 level. The thermodynamic parameters indicated that the adsorption of SAF onto the fullerene-like cages is exothermic, particularly for the Al<sub>16</sub>N<sub>16</sub>/SAF complex. Additionally, the interaction of SAF with the fullerene-like cages in the water phase is more pronounced than in gas and chloroform environments. The complexes' energy gap (Eg) decreases in all three environments compared to the perfect systems, with a significant reduction of over 21 % in all phases. This substantial decrease in the energy gap suggests that the complexes have increased reactivity and sensitivity to SAF, likely due to a significant change in electronic conductivity. The results of molecular docking indicate that the Al<sub>16</sub>N<sub>16</sub>/SAF complex in the water phase exhibited a strong binding affinity compared to the other compounds studied. These findings suggest that the Al<sub>16</sub>N<sub>16</sub>/SAF complex holds promise as a potential inhibitor for COVID-19 and as a valuable material for biomedical applications and drug delivery systems.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"254 \",\"pages\":\"Article 105206\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001461\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001461","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Novel investigation on adsorption analysis of safranal interacting with boron nitride and aluminum nitride fullerene-like cages: Drug delivery system
This study illustrates the effective control of COVID-19 infection through the adsorption of safranal (SAF) on B16N16 and Al16N16 fullerene-like cages. The SAF adsorption onto the B16N16 and Al16N16 surfaces in gas, water (H2O), and chloroform (CHCl3) environments were assessed using density functional theory (DFT) and time-dependent (TD) density functional theory methods, analyzing the substrates and their complexes. The Al16N16/SAF complex exhibited the most negative binding energy and structural stability in the water phase compared to the B16N16/SAF complex at the PBE0-D3 level. The thermodynamic parameters indicated that the adsorption of SAF onto the fullerene-like cages is exothermic, particularly for the Al16N16/SAF complex. Additionally, the interaction of SAF with the fullerene-like cages in the water phase is more pronounced than in gas and chloroform environments. The complexes' energy gap (Eg) decreases in all three environments compared to the perfect systems, with a significant reduction of over 21 % in all phases. This substantial decrease in the energy gap suggests that the complexes have increased reactivity and sensitivity to SAF, likely due to a significant change in electronic conductivity. The results of molecular docking indicate that the Al16N16/SAF complex in the water phase exhibited a strong binding affinity compared to the other compounds studied. These findings suggest that the Al16N16/SAF complex holds promise as a potential inhibitor for COVID-19 and as a valuable material for biomedical applications and drug delivery systems.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.