论平均场控制中收敛问题的最佳速率

IF 1.7 2区 数学 Q1 MATHEMATICS Journal of Functional Analysis Pub Date : 2024-08-31 DOI:10.1016/j.jfa.2024.110660
Samuel Daudin , François Delarue , Joe Jackson
{"title":"论平均场控制中收敛问题的最佳速率","authors":"Samuel Daudin ,&nbsp;François Delarue ,&nbsp;Joe Jackson","doi":"10.1016/j.jfa.2024.110660","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this work is to obtain (nearly) optimal rates for the convergence problem in mean field control. Our analysis covers cases where the solutions to the limiting problem may not be unique nor stable. Equivalently the value function of the limiting problem might not be differentiable on the entire space. Our main result is then to derive sharp rates of convergence in two distinct regimes. First, when the data is sufficiently regular, we obtain rates proportional to <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, with <em>N</em> being the number of particles, and we verify that <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> is indeed optimal in this setting. Second, when the data is merely Lipschitz and semi-concave with respect to the first Wasserstein distance, we obtain rates proportional to <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mo>(</mo><mn>3</mn><mi>d</mi><mo>+</mo><mn>6</mn><mo>)</mo></mrow></msup></math></span>. We do not expect this second estimate to be optimal, but it improves substantially on the existing literature. Moreover, we construct an example showing that the optimal rate is no faster than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></math></span>, and we conjecture that the optimal rate should indeed be exactly <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></math></span> (at least when <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>). The key argument in our approach consists in mollifying the value function of the limiting problem in order to produce functions that are almost classical sub-solutions to the limiting Hamilton-Jacobi equation (which is a PDE set on the space of probability measures). These sub-solutions can be projected onto finite dimensional spaces and then compared with the value functions associated with the particle systems. In the end, this comparison is used to prove the most demanding bound in the estimates. The key challenge therein is thus to exhibit an appropriate form of mollification. We do so by employing sup-convolution within a convenient functional Hilbert space. To make the whole easier, we limit ourselves to the periodic setting. We also provide some examples to show that our results are sharp up to some extent.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110660"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003483/pdfft?md5=5935f79205a900c37dc8ad1a51b88e6a&pid=1-s2.0-S0022123624003483-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the optimal rate for the convergence problem in mean field control\",\"authors\":\"Samuel Daudin ,&nbsp;François Delarue ,&nbsp;Joe Jackson\",\"doi\":\"10.1016/j.jfa.2024.110660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of this work is to obtain (nearly) optimal rates for the convergence problem in mean field control. Our analysis covers cases where the solutions to the limiting problem may not be unique nor stable. Equivalently the value function of the limiting problem might not be differentiable on the entire space. Our main result is then to derive sharp rates of convergence in two distinct regimes. First, when the data is sufficiently regular, we obtain rates proportional to <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, with <em>N</em> being the number of particles, and we verify that <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> is indeed optimal in this setting. Second, when the data is merely Lipschitz and semi-concave with respect to the first Wasserstein distance, we obtain rates proportional to <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mo>(</mo><mn>3</mn><mi>d</mi><mo>+</mo><mn>6</mn><mo>)</mo></mrow></msup></math></span>. We do not expect this second estimate to be optimal, but it improves substantially on the existing literature. Moreover, we construct an example showing that the optimal rate is no faster than <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></math></span>, and we conjecture that the optimal rate should indeed be exactly <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></math></span> (at least when <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>). The key argument in our approach consists in mollifying the value function of the limiting problem in order to produce functions that are almost classical sub-solutions to the limiting Hamilton-Jacobi equation (which is a PDE set on the space of probability measures). These sub-solutions can be projected onto finite dimensional spaces and then compared with the value functions associated with the particle systems. In the end, this comparison is used to prove the most demanding bound in the estimates. The key challenge therein is thus to exhibit an appropriate form of mollification. We do so by employing sup-convolution within a convenient functional Hilbert space. To make the whole easier, we limit ourselves to the periodic setting. We also provide some examples to show that our results are sharp up to some extent.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"287 12\",\"pages\":\"Article 110660\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003483/pdfft?md5=5935f79205a900c37dc8ad1a51b88e6a&pid=1-s2.0-S0022123624003483-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003483\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003483","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目标是获得平均场控制收敛问题的(近)最优率。我们的分析涵盖了极限问题解可能不唯一也不稳定的情况。同样,极限问题的值函数也可能在整个空间上不可微。因此,我们的主要结果是推导出两种不同情况下的急剧收敛速率。首先,当数据足够规则时,我们会得到与 N-1/2 成比例的收敛率,N 是粒子的数量,我们验证了 N-1/2 在这种情况下确实是最优的。其次,当数据仅仅是 Lipschitz 且与第一个 Wasserstein 距离呈半凹时,我们会得到与 N-2/(3d+6)成正比的速率。我们并不指望第二个估计值是最优的,但它大大改进了现有的文献。此外,我们还构建了一个例子,表明最佳速率不会快于 N-1/d,而且我们猜想最佳速率应该正好是 N-1/d(至少当 d≥3 时)。我们的方法的关键论点在于,对极限问题的值函数进行调和,以产生几乎是极限汉密尔顿-雅可比方程(这是概率度量空间上的一个 PDE 集)经典子解的函数。这些子解可以投影到有限维空间,然后与粒子系统相关的值函数进行比较。最后,这种比较被用来证明估计中最苛刻的约束。因此,其中的关键挑战在于展示一种适当的摩尔化形式。为此,我们在方便的函数希尔伯特空间内采用了超卷积。为了简化整个过程,我们将自己限制在周期性的环境中。我们还提供了一些例子来说明我们的结果在一定程度上是锐利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the optimal rate for the convergence problem in mean field control

The goal of this work is to obtain (nearly) optimal rates for the convergence problem in mean field control. Our analysis covers cases where the solutions to the limiting problem may not be unique nor stable. Equivalently the value function of the limiting problem might not be differentiable on the entire space. Our main result is then to derive sharp rates of convergence in two distinct regimes. First, when the data is sufficiently regular, we obtain rates proportional to N1/2, with N being the number of particles, and we verify that N1/2 is indeed optimal in this setting. Second, when the data is merely Lipschitz and semi-concave with respect to the first Wasserstein distance, we obtain rates proportional to N2/(3d+6). We do not expect this second estimate to be optimal, but it improves substantially on the existing literature. Moreover, we construct an example showing that the optimal rate is no faster than N1/d, and we conjecture that the optimal rate should indeed be exactly N1/d (at least when d3). The key argument in our approach consists in mollifying the value function of the limiting problem in order to produce functions that are almost classical sub-solutions to the limiting Hamilton-Jacobi equation (which is a PDE set on the space of probability measures). These sub-solutions can be projected onto finite dimensional spaces and then compared with the value functions associated with the particle systems. In the end, this comparison is used to prove the most demanding bound in the estimates. The key challenge therein is thus to exhibit an appropriate form of mollification. We do so by employing sup-convolution within a convenient functional Hilbert space. To make the whole easier, we limit ourselves to the periodic setting. We also provide some examples to show that our results are sharp up to some extent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
期刊最新文献
Editorial Board The Leray transform: Distinguished measures, symmetries and polygamma inequalities Power boundedness and related properties for weighted composition operators on S(Rd) Optimal bounds for the Dunkl kernel in the dihedral case Scalar curvature rigidity and the higher mapping degree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1