{"title":"利用磁化 Hopfield 神经网络和金枪鱼群优化算法识别物联网设备类型","authors":"Muthukrishnan A , Kamalesh S","doi":"10.1016/j.swevo.2024.101653","DOIUrl":null,"url":null,"abstract":"<div><p>Internet of Things (IoT) networks consist of physical devices connected to the Internet, embedded with actuators, sensors, and communication components that exchange data. To enhance IoT security, accurately identifying and assessing the safety of connected devices is essential. To improve IoT security, this research proposes the IoT Device Type Identification utilizing Memristor-based Magnetized Hopfield Neural Network with Tuna Swarm Optimization Algorithm (IOT-DTI-MHNN-TSOA). It includes data collection, feature extraction, IoT device type identification. In data collection, an actual network traffic dataset amassed through 10 various IoT device categories is used. In the feature extraction phase, optimal features such as TCP packets' time-to-live by server, packets' inter-arrival time by client, packets' inter-arrival time by server, TCP packets' time-to-live by client, packets' inter-arrival time, packet size, number of bytes sent and received, packet size by client, and total number of packets are extracted using a 2-Dimensional Flexible Analytic Wavelet Transform (2D-FAWT). These extracting features are provided to the IoT device type identification phase. In this phase, a Memristor-based Magnetized Hopfield Neural Network (MHNN) method is employed to perceive the categories of IoT device as known/seen or unknown/unseen categories. The Tuna Swarm Optimization Algorithm (TSOA) enhances the weight parameters of MHNN. The efficacy of the IOT-DTI-MHNN-TSOA classification framework is assessed using performance metrics, like precision, accuracy, F1-score, sensitivity, specificity, error rate, computational time, ROC, Computational Complexity. The IOT-DTI-MHNN-TSOA method provides higher accuracy of 99.97 %, higher sensitivity of 99.95 %, and higher precision of 99.92 % compared to the existing models.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101653"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IOT device type identification using magnetized Hopfield neural network with tuna swarm optimization algorithm\",\"authors\":\"Muthukrishnan A , Kamalesh S\",\"doi\":\"10.1016/j.swevo.2024.101653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Internet of Things (IoT) networks consist of physical devices connected to the Internet, embedded with actuators, sensors, and communication components that exchange data. To enhance IoT security, accurately identifying and assessing the safety of connected devices is essential. To improve IoT security, this research proposes the IoT Device Type Identification utilizing Memristor-based Magnetized Hopfield Neural Network with Tuna Swarm Optimization Algorithm (IOT-DTI-MHNN-TSOA). It includes data collection, feature extraction, IoT device type identification. In data collection, an actual network traffic dataset amassed through 10 various IoT device categories is used. In the feature extraction phase, optimal features such as TCP packets' time-to-live by server, packets' inter-arrival time by client, packets' inter-arrival time by server, TCP packets' time-to-live by client, packets' inter-arrival time, packet size, number of bytes sent and received, packet size by client, and total number of packets are extracted using a 2-Dimensional Flexible Analytic Wavelet Transform (2D-FAWT). These extracting features are provided to the IoT device type identification phase. In this phase, a Memristor-based Magnetized Hopfield Neural Network (MHNN) method is employed to perceive the categories of IoT device as known/seen or unknown/unseen categories. The Tuna Swarm Optimization Algorithm (TSOA) enhances the weight parameters of MHNN. The efficacy of the IOT-DTI-MHNN-TSOA classification framework is assessed using performance metrics, like precision, accuracy, F1-score, sensitivity, specificity, error rate, computational time, ROC, Computational Complexity. The IOT-DTI-MHNN-TSOA method provides higher accuracy of 99.97 %, higher sensitivity of 99.95 %, and higher precision of 99.92 % compared to the existing models.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101653\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224001913\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224001913","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
IOT device type identification using magnetized Hopfield neural network with tuna swarm optimization algorithm
Internet of Things (IoT) networks consist of physical devices connected to the Internet, embedded with actuators, sensors, and communication components that exchange data. To enhance IoT security, accurately identifying and assessing the safety of connected devices is essential. To improve IoT security, this research proposes the IoT Device Type Identification utilizing Memristor-based Magnetized Hopfield Neural Network with Tuna Swarm Optimization Algorithm (IOT-DTI-MHNN-TSOA). It includes data collection, feature extraction, IoT device type identification. In data collection, an actual network traffic dataset amassed through 10 various IoT device categories is used. In the feature extraction phase, optimal features such as TCP packets' time-to-live by server, packets' inter-arrival time by client, packets' inter-arrival time by server, TCP packets' time-to-live by client, packets' inter-arrival time, packet size, number of bytes sent and received, packet size by client, and total number of packets are extracted using a 2-Dimensional Flexible Analytic Wavelet Transform (2D-FAWT). These extracting features are provided to the IoT device type identification phase. In this phase, a Memristor-based Magnetized Hopfield Neural Network (MHNN) method is employed to perceive the categories of IoT device as known/seen or unknown/unseen categories. The Tuna Swarm Optimization Algorithm (TSOA) enhances the weight parameters of MHNN. The efficacy of the IOT-DTI-MHNN-TSOA classification framework is assessed using performance metrics, like precision, accuracy, F1-score, sensitivity, specificity, error rate, computational time, ROC, Computational Complexity. The IOT-DTI-MHNN-TSOA method provides higher accuracy of 99.97 %, higher sensitivity of 99.95 %, and higher precision of 99.92 % compared to the existing models.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.