Xiaochen Chu , Xiaofeng Han , Maorui Zhang , Miqing Li
{"title":"通过强化角权重改进基于分解的组合优化 MOEAs","authors":"Xiaochen Chu , Xiaofeng Han , Maorui Zhang , Miqing Li","doi":"10.1016/j.swevo.2024.101722","DOIUrl":null,"url":null,"abstract":"<div><p>In the real world, a class of common problems such as supply chain management, project scheduling, portfolio optimisation and facility location design are multi-objective combinatorial optimisation problems (MOCOPs), where there are multiple objectives and the set of feasible solutions is discrete. In MOCOPs, corner solutions are solutions in which at least one objective reaches the optimal value. Corner solutions are important as they are likely to be preferred by the decision maker and are able to help improve algorithm performance. In this paper, we first reveal that in decomposition-based MOEAs, improving the corner weights (as opposed to improving the middle weights) significantly enhances the generation of corner solutions, thereby enhancing the overall performance of algorithms. Based on this, we propose a method to enhance the search for corner solutions in MOCOPs. We act on a class of popular MOEAs, decomposition-based MOEAs, and in their evolutionary mechanism we intensify the weights in the corner areas. To verify the proposed method, we conduct experiments by incorporating the method into three decomposition-based MOEAs, MOEA/D, MOEA/D-DRA-UT and MOEA/D-LdEA (the latter two were designed specifically for enhancing the search of corner solutions). The experimental results demonstrate that the proposed method can improve the spread of solution sets found, without compromising the quality of internal solutions.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101722"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2210650224002608/pdfft?md5=bb078c5eba46bd595de7307ec96bcb7d&pid=1-s2.0-S2210650224002608-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving decomposition-based MOEAs for combinatorial optimisation by intensifying corner weights\",\"authors\":\"Xiaochen Chu , Xiaofeng Han , Maorui Zhang , Miqing Li\",\"doi\":\"10.1016/j.swevo.2024.101722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the real world, a class of common problems such as supply chain management, project scheduling, portfolio optimisation and facility location design are multi-objective combinatorial optimisation problems (MOCOPs), where there are multiple objectives and the set of feasible solutions is discrete. In MOCOPs, corner solutions are solutions in which at least one objective reaches the optimal value. Corner solutions are important as they are likely to be preferred by the decision maker and are able to help improve algorithm performance. In this paper, we first reveal that in decomposition-based MOEAs, improving the corner weights (as opposed to improving the middle weights) significantly enhances the generation of corner solutions, thereby enhancing the overall performance of algorithms. Based on this, we propose a method to enhance the search for corner solutions in MOCOPs. We act on a class of popular MOEAs, decomposition-based MOEAs, and in their evolutionary mechanism we intensify the weights in the corner areas. To verify the proposed method, we conduct experiments by incorporating the method into three decomposition-based MOEAs, MOEA/D, MOEA/D-DRA-UT and MOEA/D-LdEA (the latter two were designed specifically for enhancing the search of corner solutions). The experimental results demonstrate that the proposed method can improve the spread of solution sets found, without compromising the quality of internal solutions.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101722\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002608/pdfft?md5=bb078c5eba46bd595de7307ec96bcb7d&pid=1-s2.0-S2210650224002608-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002608\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002608","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improving decomposition-based MOEAs for combinatorial optimisation by intensifying corner weights
In the real world, a class of common problems such as supply chain management, project scheduling, portfolio optimisation and facility location design are multi-objective combinatorial optimisation problems (MOCOPs), where there are multiple objectives and the set of feasible solutions is discrete. In MOCOPs, corner solutions are solutions in which at least one objective reaches the optimal value. Corner solutions are important as they are likely to be preferred by the decision maker and are able to help improve algorithm performance. In this paper, we first reveal that in decomposition-based MOEAs, improving the corner weights (as opposed to improving the middle weights) significantly enhances the generation of corner solutions, thereby enhancing the overall performance of algorithms. Based on this, we propose a method to enhance the search for corner solutions in MOCOPs. We act on a class of popular MOEAs, decomposition-based MOEAs, and in their evolutionary mechanism we intensify the weights in the corner areas. To verify the proposed method, we conduct experiments by incorporating the method into three decomposition-based MOEAs, MOEA/D, MOEA/D-DRA-UT and MOEA/D-LdEA (the latter two were designed specifically for enhancing the search of corner solutions). The experimental results demonstrate that the proposed method can improve the spread of solution sets found, without compromising the quality of internal solutions.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.