{"title":"受限多目标优化的协同进化多任务处理","authors":"Songbai Liu, Zeyi Wang, Qiuzhen Lin, Jianyong Chen","doi":"10.1016/j.swevo.2024.101727","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing the challenges of constrained multiobjective optimization problems (CMOPs) with evolutionary algorithms requires balancing constraint satisfaction and optimization objectives. Coevolutionary multitasking (CEMT) offers a promising strategy by leveraging synergies from distinct, complementary tasks. The primary challenge in CEMT frameworks is constructing suitable auxiliary tasks that effectively complement the main CMOP task. In this paper, we propose an adaptive CEMT framework (ACEMT), which customizes two adaptive auxiliary tasks to enhance CMOP-solving efficiency. The first auxiliary task dynamically narrows constraint boundaries, facilitating exploration in regions with smaller feasible spaces. The second task focuses specifically on individual constraints, continuously adapting to expedite convergence and uncover optimal regions. In solving the main CMOP task, this dual-auxiliary-task strategy not only improves search thoroughness but also clarifies the balance between constraints and objectives. Concretely, ACEMT incorporates an adaptive constraint relaxation technique for the first auxiliary task and a specialized constraint selection strategy for the second. These innovations foster effective knowledge transfer and task synergy, addressing the key challenge of auxiliary task construction in CEMT frameworks. Extensive experiments on three benchmark suites and real-world applications demonstrate ACEMT’s superior performance compared to state-of-the-art constrained evolutionary algorithms. ACEMT sets a new standard in CMOP-solving by strategically constructing and adapting auxiliary tasks, representing a significant advancement in this research direction.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101727"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coevolutionary multitasking for constrained multiobjective optimization\",\"authors\":\"Songbai Liu, Zeyi Wang, Qiuzhen Lin, Jianyong Chen\",\"doi\":\"10.1016/j.swevo.2024.101727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Addressing the challenges of constrained multiobjective optimization problems (CMOPs) with evolutionary algorithms requires balancing constraint satisfaction and optimization objectives. Coevolutionary multitasking (CEMT) offers a promising strategy by leveraging synergies from distinct, complementary tasks. The primary challenge in CEMT frameworks is constructing suitable auxiliary tasks that effectively complement the main CMOP task. In this paper, we propose an adaptive CEMT framework (ACEMT), which customizes two adaptive auxiliary tasks to enhance CMOP-solving efficiency. The first auxiliary task dynamically narrows constraint boundaries, facilitating exploration in regions with smaller feasible spaces. The second task focuses specifically on individual constraints, continuously adapting to expedite convergence and uncover optimal regions. In solving the main CMOP task, this dual-auxiliary-task strategy not only improves search thoroughness but also clarifies the balance between constraints and objectives. Concretely, ACEMT incorporates an adaptive constraint relaxation technique for the first auxiliary task and a specialized constraint selection strategy for the second. These innovations foster effective knowledge transfer and task synergy, addressing the key challenge of auxiliary task construction in CEMT frameworks. Extensive experiments on three benchmark suites and real-world applications demonstrate ACEMT’s superior performance compared to state-of-the-art constrained evolutionary algorithms. ACEMT sets a new standard in CMOP-solving by strategically constructing and adapting auxiliary tasks, representing a significant advancement in this research direction.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101727\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002657\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002657","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Coevolutionary multitasking for constrained multiobjective optimization
Addressing the challenges of constrained multiobjective optimization problems (CMOPs) with evolutionary algorithms requires balancing constraint satisfaction and optimization objectives. Coevolutionary multitasking (CEMT) offers a promising strategy by leveraging synergies from distinct, complementary tasks. The primary challenge in CEMT frameworks is constructing suitable auxiliary tasks that effectively complement the main CMOP task. In this paper, we propose an adaptive CEMT framework (ACEMT), which customizes two adaptive auxiliary tasks to enhance CMOP-solving efficiency. The first auxiliary task dynamically narrows constraint boundaries, facilitating exploration in regions with smaller feasible spaces. The second task focuses specifically on individual constraints, continuously adapting to expedite convergence and uncover optimal regions. In solving the main CMOP task, this dual-auxiliary-task strategy not only improves search thoroughness but also clarifies the balance between constraints and objectives. Concretely, ACEMT incorporates an adaptive constraint relaxation technique for the first auxiliary task and a specialized constraint selection strategy for the second. These innovations foster effective knowledge transfer and task synergy, addressing the key challenge of auxiliary task construction in CEMT frameworks. Extensive experiments on three benchmark suites and real-world applications demonstrate ACEMT’s superior performance compared to state-of-the-art constrained evolutionary algorithms. ACEMT sets a new standard in CMOP-solving by strategically constructing and adapting auxiliary tasks, representing a significant advancement in this research direction.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.