{"title":"将多尺度特征边界模块和特征融合与 CNN 相结合,实现准确的皮肤癌分段和分类","authors":"S. Malaiarasan, R. Ravi","doi":"10.1002/ima.23167","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The skin, a crucial organ, plays a protective role in the human body, emphasizing the significance of early detection of skin diseases to prevent potential progression to skin cancer. The challenge lies in diagnosing these diseases at their early stages, where visual resemblance complicates differentiation, highlighting the need for an innovative automated method for precisely identifying skin lesions in biomedical images. This paper introduces a holistic methodology that combines DenseNet, multi-scale feature boundary module (MFBM), and feature fusion and decoding engine (FFDE) to tackle challenges in existing deep-learning image segmentation methods. Furthermore, a convolutional neural network model is designed for the classification of segmented images. The DenseNet encoder efficiently extracts features at four resolution levels, leveraging dense connectivity to capture intricate hierarchical features. The proposed MFBM plays a crucial role in extracting boundary information, employing parallel dilated convolutions with various dilation rates for effective multi-scale information capture. To overcome potential disadvantages related to the conversion of features during segmentation, our approach ensures the preservation of context features. The proposed FFDE method adaptively fuses features from different levels, restoring skin lesion location information while preserving local details. The evaluation of the model is conducted on the HAM10000 dataset, which consists of 10 015 dermoscopy images, yielding promising results.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Multi-Scale Feature Boundary Module and Feature Fusion With CNN for Accurate Skin Cancer Segmentation and Classification\",\"authors\":\"S. Malaiarasan, R. Ravi\",\"doi\":\"10.1002/ima.23167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The skin, a crucial organ, plays a protective role in the human body, emphasizing the significance of early detection of skin diseases to prevent potential progression to skin cancer. The challenge lies in diagnosing these diseases at their early stages, where visual resemblance complicates differentiation, highlighting the need for an innovative automated method for precisely identifying skin lesions in biomedical images. This paper introduces a holistic methodology that combines DenseNet, multi-scale feature boundary module (MFBM), and feature fusion and decoding engine (FFDE) to tackle challenges in existing deep-learning image segmentation methods. Furthermore, a convolutional neural network model is designed for the classification of segmented images. The DenseNet encoder efficiently extracts features at four resolution levels, leveraging dense connectivity to capture intricate hierarchical features. The proposed MFBM plays a crucial role in extracting boundary information, employing parallel dilated convolutions with various dilation rates for effective multi-scale information capture. To overcome potential disadvantages related to the conversion of features during segmentation, our approach ensures the preservation of context features. The proposed FFDE method adaptively fuses features from different levels, restoring skin lesion location information while preserving local details. The evaluation of the model is conducted on the HAM10000 dataset, which consists of 10 015 dermoscopy images, yielding promising results.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23167\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23167","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Integrating Multi-Scale Feature Boundary Module and Feature Fusion With CNN for Accurate Skin Cancer Segmentation and Classification
The skin, a crucial organ, plays a protective role in the human body, emphasizing the significance of early detection of skin diseases to prevent potential progression to skin cancer. The challenge lies in diagnosing these diseases at their early stages, where visual resemblance complicates differentiation, highlighting the need for an innovative automated method for precisely identifying skin lesions in biomedical images. This paper introduces a holistic methodology that combines DenseNet, multi-scale feature boundary module (MFBM), and feature fusion and decoding engine (FFDE) to tackle challenges in existing deep-learning image segmentation methods. Furthermore, a convolutional neural network model is designed for the classification of segmented images. The DenseNet encoder efficiently extracts features at four resolution levels, leveraging dense connectivity to capture intricate hierarchical features. The proposed MFBM plays a crucial role in extracting boundary information, employing parallel dilated convolutions with various dilation rates for effective multi-scale information capture. To overcome potential disadvantages related to the conversion of features during segmentation, our approach ensures the preservation of context features. The proposed FFDE method adaptively fuses features from different levels, restoring skin lesion location information while preserving local details. The evaluation of the model is conducted on the HAM10000 dataset, which consists of 10 015 dermoscopy images, yielding promising results.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.