人类先天性长链脂肪酸氧化错误显示出对 TLR4 配体 LPS 的炎症反应受损

IF 2.5 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY FASEB bioAdvances Pub Date : 2024-08-19 DOI:10.1096/fba.2024-00060
Signe Mosegaard, Krishna S. Twayana, Simone W. Denis, Jeffrey Kroon, Bauke V. Schomakers, Michel van Weeghel, Riekelt H. Houtkooper, Rikke K. J. Olsen, Christian K. Holm
{"title":"人类先天性长链脂肪酸氧化错误显示出对 TLR4 配体 LPS 的炎症反应受损","authors":"Signe Mosegaard,&nbsp;Krishna S. Twayana,&nbsp;Simone W. Denis,&nbsp;Jeffrey Kroon,&nbsp;Bauke V. Schomakers,&nbsp;Michel van Weeghel,&nbsp;Riekelt H. Houtkooper,&nbsp;Rikke K. J. Olsen,&nbsp;Christian K. Holm","doi":"10.1096/fba.2024-00060","DOIUrl":null,"url":null,"abstract":"<p>Stimulation of mammalian cells with inflammatory inducers such as lipopolysaccharide (LPS) leads to alterations in activity of central cellular metabolic pathways. Interestingly, these metabolic changes seem to be important for subsequent release of pro-inflammatory cytokines. This has become particularly clear for enzymes of tricarboxylic acid (TCA) cycle such as succinate dehydrogenase (<i>SDH</i>). LPS leads to inhibition of SDH activity and accumulation of succinate to enhance the LPS-induced formation of IL-1β. If enzymes involved in beta-oxidation of fatty acids are important for sufficient responses to LPS is currently not clear. Using cells from various patients with inborn long-chain fatty acid oxidation disorders (lcFAOD), we report that disease-causing deleterious variants of Electron Transfer Flavoprotein Dehydrogenase (<i>ETFDH</i>) and of Very Long Chain Acyl-CoA Dehydrogenase (<i>ACADVL</i>), both cause insufficient inflammatory responses to stimulation with LPS. The insufficiencies included reduced TLR4 expression levels, impaired TLR4 signaling, and reduced or absent induction of pro-inflammatory cytokines such as IL-6. The insufficient responses to LPS were reproduced in cells from healthy controls by targeted loss-of-function of either <i>ETFDH</i> or <i>ACADVL,</i> supporting that the deleterious <i>ETFDH</i> and <i>ACADVL</i> variants cause the attenuated responses to LPS. <i>ETFDH</i> and <i>ACADVL</i> encode two distinct enzymes both involved in fatty acid beta-oxidation, and patients with these deficiencies cannot sufficiently metabolize long-chain fatty acids. We report that genes important for beta-oxidation of long-chain fatty acids are also important for inflammatory responses to an acute immunogen trigger like LPS, which may have important implications for understanding infection and other metabolic stress induced disease pathology in lcFAODs.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 9","pages":"337-350"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2024-00060","citationCount":"0","resultStr":"{\"title\":\"Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS\",\"authors\":\"Signe Mosegaard,&nbsp;Krishna S. Twayana,&nbsp;Simone W. Denis,&nbsp;Jeffrey Kroon,&nbsp;Bauke V. Schomakers,&nbsp;Michel van Weeghel,&nbsp;Riekelt H. Houtkooper,&nbsp;Rikke K. J. Olsen,&nbsp;Christian K. Holm\",\"doi\":\"10.1096/fba.2024-00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stimulation of mammalian cells with inflammatory inducers such as lipopolysaccharide (LPS) leads to alterations in activity of central cellular metabolic pathways. Interestingly, these metabolic changes seem to be important for subsequent release of pro-inflammatory cytokines. This has become particularly clear for enzymes of tricarboxylic acid (TCA) cycle such as succinate dehydrogenase (<i>SDH</i>). LPS leads to inhibition of SDH activity and accumulation of succinate to enhance the LPS-induced formation of IL-1β. If enzymes involved in beta-oxidation of fatty acids are important for sufficient responses to LPS is currently not clear. Using cells from various patients with inborn long-chain fatty acid oxidation disorders (lcFAOD), we report that disease-causing deleterious variants of Electron Transfer Flavoprotein Dehydrogenase (<i>ETFDH</i>) and of Very Long Chain Acyl-CoA Dehydrogenase (<i>ACADVL</i>), both cause insufficient inflammatory responses to stimulation with LPS. The insufficiencies included reduced TLR4 expression levels, impaired TLR4 signaling, and reduced or absent induction of pro-inflammatory cytokines such as IL-6. The insufficient responses to LPS were reproduced in cells from healthy controls by targeted loss-of-function of either <i>ETFDH</i> or <i>ACADVL,</i> supporting that the deleterious <i>ETFDH</i> and <i>ACADVL</i> variants cause the attenuated responses to LPS. <i>ETFDH</i> and <i>ACADVL</i> encode two distinct enzymes both involved in fatty acid beta-oxidation, and patients with these deficiencies cannot sufficiently metabolize long-chain fatty acids. We report that genes important for beta-oxidation of long-chain fatty acids are also important for inflammatory responses to an acute immunogen trigger like LPS, which may have important implications for understanding infection and other metabolic stress induced disease pathology in lcFAODs.</p>\",\"PeriodicalId\":12093,\"journal\":{\"name\":\"FASEB bioAdvances\",\"volume\":\"6 9\",\"pages\":\"337-350\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2024-00060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB bioAdvances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fba.2024-00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fba.2024-00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

用脂多糖(LPS)等炎症诱导剂刺激哺乳动物细胞,会导致细胞中央代谢途径的活性发生变化。有趣的是,这些代谢变化似乎对随后促炎细胞因子的释放非常重要。这一点在琥珀酸脱氢酶(SDH)等三羧酸(TCA)循环酶中表现得尤为明显。LPS 会抑制 SDH 的活性,并导致琥珀酸的积累,从而增强 LPS 诱导的 IL-1β 的形成。目前还不清楚参与脂肪酸β-氧化的酶是否对 LPS 的充分反应很重要。通过使用来自不同先天性长链脂肪酸氧化紊乱(lcFAOD)患者的细胞,我们报告了电子转移黄素脱氢酶(ETFDH)和超长链酰基-CoA脱氢酶(ACADVL)的致病有害变体都会导致对 LPS 刺激的炎症反应不足。这些不足之处包括 TLR4 表达水平降低、TLR4 信号转导受损、诱导的促炎细胞因子(如 IL-6)减少或消失。通过定向缺失 ETFDH 或 ACADVL 的功能,来自健康对照组的细胞再现了对 LPS 的不充分反应,证明有害的 ETFDH 和 ACADVL 变体导致了对 LPS 的反应减弱。ETFDH和ACADVL编码两种不同的酶,它们都参与脂肪酸的β-氧化,而缺乏这两种酶的患者不能充分代谢长链脂肪酸。我们报告说,对长链脂肪酸β-氧化很重要的基因对 LPS 等急性免疫原触发的炎症反应也很重要,这可能对理解 lcFAODs 感染和其他代谢压力诱发的疾病病理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS

Stimulation of mammalian cells with inflammatory inducers such as lipopolysaccharide (LPS) leads to alterations in activity of central cellular metabolic pathways. Interestingly, these metabolic changes seem to be important for subsequent release of pro-inflammatory cytokines. This has become particularly clear for enzymes of tricarboxylic acid (TCA) cycle such as succinate dehydrogenase (SDH). LPS leads to inhibition of SDH activity and accumulation of succinate to enhance the LPS-induced formation of IL-1β. If enzymes involved in beta-oxidation of fatty acids are important for sufficient responses to LPS is currently not clear. Using cells from various patients with inborn long-chain fatty acid oxidation disorders (lcFAOD), we report that disease-causing deleterious variants of Electron Transfer Flavoprotein Dehydrogenase (ETFDH) and of Very Long Chain Acyl-CoA Dehydrogenase (ACADVL), both cause insufficient inflammatory responses to stimulation with LPS. The insufficiencies included reduced TLR4 expression levels, impaired TLR4 signaling, and reduced or absent induction of pro-inflammatory cytokines such as IL-6. The insufficient responses to LPS were reproduced in cells from healthy controls by targeted loss-of-function of either ETFDH or ACADVL, supporting that the deleterious ETFDH and ACADVL variants cause the attenuated responses to LPS. ETFDH and ACADVL encode two distinct enzymes both involved in fatty acid beta-oxidation, and patients with these deficiencies cannot sufficiently metabolize long-chain fatty acids. We report that genes important for beta-oxidation of long-chain fatty acids are also important for inflammatory responses to an acute immunogen trigger like LPS, which may have important implications for understanding infection and other metabolic stress induced disease pathology in lcFAODs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FASEB bioAdvances
FASEB bioAdvances Multiple-
CiteScore
5.40
自引率
3.70%
发文量
56
审稿时长
10 weeks
期刊最新文献
Issue Information Medium-chain fatty acid receptor GPR84 deficiency leads to metabolic homeostasis dysfunction in mice fed high-fat diet TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression Everything, everywhere, and all at once: A blueprint for supra-organization of core facilities New role of calcium-binding fluorescent dye alizarin complexone in detecting permeability from articular cartilage to subchondral bone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1