利用超级电容器提高电化学二氧化碳捕获能力

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-08 DOI:10.1038/s41467-024-52219-3
Zhen Xu, Grace Mapstone, Zeke Coady, Mengnan Wang, Tristan L. Spreng, Xinyu Liu, Davide Molino, Alexander C. Forse
{"title":"利用超级电容器提高电化学二氧化碳捕获能力","authors":"Zhen Xu, Grace Mapstone, Zeke Coady, Mengnan Wang, Tristan L. Spreng, Xinyu Liu, Davide Molino, Alexander C. Forse","doi":"10.1038/s41467-024-52219-3","DOIUrl":null,"url":null,"abstract":"<p>Supercapacitors are emerging as energy-efficient and robust devices for electrochemical CO<sub>2</sub> capture. However, the impacts of electrode structure and charging protocols on CO<sub>2</sub> capture performance remain unclear. Therefore, this study develops structure-property-performance correlations for supercapacitor electrodes at different charging conditions. We find that electrodes with large surface areas and low oxygen functionalization generally perform best, while a combination of micro- and mesopores is important to achieve fast CO<sub>2</sub> capture rates. With these structural features and tunable charging protocols, YP80F activated carbon electrodes show the best CO<sub>2</sub> capture performance with a capture rate of 350 mmol<sub>CO2</sub> kg<sup>–1</sup> h<sup>–1</sup> and a low electrical energy consumption of 18 kJ mol<sub>CO2</sub><sup>–1</sup> at 300 mA g<sup>–1</sup> under CO<sub>2</sub>, together with a long lifetime over 12000 cycles at 150 mA g<sup>–1</sup> under CO<sub>2</sub> and excellent CO<sub>2</sub> selectivity over N<sub>2</sub> and O<sub>2</sub>. Operated in a “positive charging mode”, the system achieves excellent electrochemical reversibility with Coulombic efficiencies over 99.8% in the presence of approximately 15% O<sub>2,</sub> alongside stable cycling performance over 1000 cycles. This study paves the way for improved supercapacitor electrodes and charging protocols for electrochemical CO<sub>2</sub> capture.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing electrochemical carbon dioxide capture with supercapacitors\",\"authors\":\"Zhen Xu, Grace Mapstone, Zeke Coady, Mengnan Wang, Tristan L. Spreng, Xinyu Liu, Davide Molino, Alexander C. Forse\",\"doi\":\"10.1038/s41467-024-52219-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supercapacitors are emerging as energy-efficient and robust devices for electrochemical CO<sub>2</sub> capture. However, the impacts of electrode structure and charging protocols on CO<sub>2</sub> capture performance remain unclear. Therefore, this study develops structure-property-performance correlations for supercapacitor electrodes at different charging conditions. We find that electrodes with large surface areas and low oxygen functionalization generally perform best, while a combination of micro- and mesopores is important to achieve fast CO<sub>2</sub> capture rates. With these structural features and tunable charging protocols, YP80F activated carbon electrodes show the best CO<sub>2</sub> capture performance with a capture rate of 350 mmol<sub>CO2</sub> kg<sup>–1</sup> h<sup>–1</sup> and a low electrical energy consumption of 18 kJ mol<sub>CO2</sub><sup>–1</sup> at 300 mA g<sup>–1</sup> under CO<sub>2</sub>, together with a long lifetime over 12000 cycles at 150 mA g<sup>–1</sup> under CO<sub>2</sub> and excellent CO<sub>2</sub> selectivity over N<sub>2</sub> and O<sub>2</sub>. Operated in a “positive charging mode”, the system achieves excellent electrochemical reversibility with Coulombic efficiencies over 99.8% in the presence of approximately 15% O<sub>2,</sub> alongside stable cycling performance over 1000 cycles. This study paves the way for improved supercapacitor electrodes and charging protocols for electrochemical CO<sub>2</sub> capture.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-52219-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52219-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器作为一种高能效、坚固耐用的电化学二氧化碳捕集装置正在崭露头角。然而,电极结构和充电协议对二氧化碳捕获性能的影响仍不清楚。因此,本研究开发了不同充电条件下超级电容器电极的结构-性能相关性。我们发现,具有大表面积和低氧官能化的电极通常性能最佳,而微孔和介孔的结合对于实现快速的二氧化碳捕获率非常重要。凭借这些结构特征和可调充电协议,YP80F 活性炭电极显示出最佳的二氧化碳捕获性能,捕获率达 350 mmolCO2 kg-1 h-1,在二氧化碳条件下 300 mA g-1 时电能消耗低至 18 kJ molCO2-1,在二氧化碳条件下 150 mA g-1 时使用寿命长达 12000 个循环,对 N2 和 O2 具有出色的二氧化碳选择性。在 "正充电模式 "下运行时,该系统实现了出色的电化学可逆性,在约 15%的氧气存在下,库仑效率超过 99.8%,同时循环性能稳定,循环次数超过 1000 次。这项研究为改进电化学二氧化碳捕获的超级电容器电极和充电协议铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing electrochemical carbon dioxide capture with supercapacitors

Supercapacitors are emerging as energy-efficient and robust devices for electrochemical CO2 capture. However, the impacts of electrode structure and charging protocols on CO2 capture performance remain unclear. Therefore, this study develops structure-property-performance correlations for supercapacitor electrodes at different charging conditions. We find that electrodes with large surface areas and low oxygen functionalization generally perform best, while a combination of micro- and mesopores is important to achieve fast CO2 capture rates. With these structural features and tunable charging protocols, YP80F activated carbon electrodes show the best CO2 capture performance with a capture rate of 350 mmolCO2 kg–1 h–1 and a low electrical energy consumption of 18 kJ molCO2–1 at 300 mA g–1 under CO2, together with a long lifetime over 12000 cycles at 150 mA g–1 under CO2 and excellent CO2 selectivity over N2 and O2. Operated in a “positive charging mode”, the system achieves excellent electrochemical reversibility with Coulombic efficiencies over 99.8% in the presence of approximately 15% O2, alongside stable cycling performance over 1000 cycles. This study paves the way for improved supercapacitor electrodes and charging protocols for electrochemical CO2 capture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
A metagenomic catalogue of the ruminant gut archaeome. Detecting biological motion signals in human and monkey superior colliculus: a subcortical-cortical pathway for biological motion perception. Enhanced production of 60Fe in massive stars. Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments. Ultrafast complete dechlorination enabled by ferrous oxide/graphene oxide catalytic membranes via nanoconfinement advanced reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1