Hermenegildo Taboada-Castro, Alfredo José Hernández-Álvarez, Jaime A Castro-Mondragón, Sergio Encarnación-Guevara
{"title":"RhizoBindingSites v2.0 是一个从基因组位点推导出的可能参与转录调控的 DNA 元基的生物信息学数据库。","authors":"Hermenegildo Taboada-Castro, Alfredo José Hernández-Álvarez, Jaime A Castro-Mondragón, Sergio Encarnación-Guevara","doi":"10.1177/11779322241272395","DOIUrl":null,"url":null,"abstract":"<p><p>RhizoBindingSites is a <i>de novo</i> depurified database of conserved DNA motifs potentially involved in the transcriptional regulation of the <i>Rhizobium</i>, <i>Sinorhizobium</i>, <i>Bradyrhizobium</i>, <i>Azorhizobium</i>, and <i>Mesorhizobium</i> genera covering 9 representative symbiotic species, deduced from the upstream regulatory sequences of orthologous genes (O-matrices) from the Rhizobiales taxon. The sites collected with O-matrices per gene per genome from RhizoBindingSites were used to deduce matrices using the dyad-Regulatory Sequence Analysis Tool (RSAT) method, giving rise to novel S-matrices for the construction of the RizoBindingSites v2.0 database. A comparison of the S-matrix logos showed a greater frequency and/or re-definition of specific-position nucleotides found in the O-matrices. Moreover, S-matrices were better at detecting genes in the genome, and there was a more significant number of transcription factors (TFs) in the vicinity than O-matrices, corresponding to a more significant genomic coverage for S-matrices. O-matrices of 3187 TFs and S-matrices of 2754 TFs from 9 species were deposited in RhizoBindingSites and RhizoBindingSites v2.0, respectively. The homology between the matrices of TFs from a genome showed inter-regulation between the clustered TFs. In addition, matrices of AraC, ArsR, GntR, and LysR ortholog TFs showed different motifs, suggesting distinct regulation. Benchmarking showed 72%, 68%, and 81% of common genes per regulon for O-matrices and approximately 14% less common genes with S-matrices of <i>Rhizobium etli</i> CFN42, <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 3841, and <i>Sinorhizobium meliloti</i> 1021. These data were deposited in RhizoBindingSites and the RhizoBindingSites v2.0 database (http://rhizobindingsites.ccg.unam.mx/).</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"18 ","pages":"11779322241272395"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380129/pdf/","citationCount":"0","resultStr":"{\"title\":\"RhizoBindingSites v2.0 Is a Bioinformatic Database of DNA Motifs Potentially Involved in Transcriptional Regulation Deduced From Their Genomic Sites.\",\"authors\":\"Hermenegildo Taboada-Castro, Alfredo José Hernández-Álvarez, Jaime A Castro-Mondragón, Sergio Encarnación-Guevara\",\"doi\":\"10.1177/11779322241272395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RhizoBindingSites is a <i>de novo</i> depurified database of conserved DNA motifs potentially involved in the transcriptional regulation of the <i>Rhizobium</i>, <i>Sinorhizobium</i>, <i>Bradyrhizobium</i>, <i>Azorhizobium</i>, and <i>Mesorhizobium</i> genera covering 9 representative symbiotic species, deduced from the upstream regulatory sequences of orthologous genes (O-matrices) from the Rhizobiales taxon. The sites collected with O-matrices per gene per genome from RhizoBindingSites were used to deduce matrices using the dyad-Regulatory Sequence Analysis Tool (RSAT) method, giving rise to novel S-matrices for the construction of the RizoBindingSites v2.0 database. A comparison of the S-matrix logos showed a greater frequency and/or re-definition of specific-position nucleotides found in the O-matrices. Moreover, S-matrices were better at detecting genes in the genome, and there was a more significant number of transcription factors (TFs) in the vicinity than O-matrices, corresponding to a more significant genomic coverage for S-matrices. O-matrices of 3187 TFs and S-matrices of 2754 TFs from 9 species were deposited in RhizoBindingSites and RhizoBindingSites v2.0, respectively. The homology between the matrices of TFs from a genome showed inter-regulation between the clustered TFs. In addition, matrices of AraC, ArsR, GntR, and LysR ortholog TFs showed different motifs, suggesting distinct regulation. Benchmarking showed 72%, 68%, and 81% of common genes per regulon for O-matrices and approximately 14% less common genes with S-matrices of <i>Rhizobium etli</i> CFN42, <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 3841, and <i>Sinorhizobium meliloti</i> 1021. These data were deposited in RhizoBindingSites and the RhizoBindingSites v2.0 database (http://rhizobindingsites.ccg.unam.mx/).</p>\",\"PeriodicalId\":9065,\"journal\":{\"name\":\"Bioinformatics and Biology Insights\",\"volume\":\"18 \",\"pages\":\"11779322241272395\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380129/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics and Biology Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11779322241272395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322241272395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
RhizoBindingSites v2.0 Is a Bioinformatic Database of DNA Motifs Potentially Involved in Transcriptional Regulation Deduced From Their Genomic Sites.
RhizoBindingSites is a de novo depurified database of conserved DNA motifs potentially involved in the transcriptional regulation of the Rhizobium, Sinorhizobium, Bradyrhizobium, Azorhizobium, and Mesorhizobium genera covering 9 representative symbiotic species, deduced from the upstream regulatory sequences of orthologous genes (O-matrices) from the Rhizobiales taxon. The sites collected with O-matrices per gene per genome from RhizoBindingSites were used to deduce matrices using the dyad-Regulatory Sequence Analysis Tool (RSAT) method, giving rise to novel S-matrices for the construction of the RizoBindingSites v2.0 database. A comparison of the S-matrix logos showed a greater frequency and/or re-definition of specific-position nucleotides found in the O-matrices. Moreover, S-matrices were better at detecting genes in the genome, and there was a more significant number of transcription factors (TFs) in the vicinity than O-matrices, corresponding to a more significant genomic coverage for S-matrices. O-matrices of 3187 TFs and S-matrices of 2754 TFs from 9 species were deposited in RhizoBindingSites and RhizoBindingSites v2.0, respectively. The homology between the matrices of TFs from a genome showed inter-regulation between the clustered TFs. In addition, matrices of AraC, ArsR, GntR, and LysR ortholog TFs showed different motifs, suggesting distinct regulation. Benchmarking showed 72%, 68%, and 81% of common genes per regulon for O-matrices and approximately 14% less common genes with S-matrices of Rhizobium etli CFN42, Rhizobium leguminosarum bv. viciae 3841, and Sinorhizobium meliloti 1021. These data were deposited in RhizoBindingSites and the RhizoBindingSites v2.0 database (http://rhizobindingsites.ccg.unam.mx/).
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.