在先验概率偏移的情况下整合外部摘要信息:在评估本质性高血压中的应用。

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae090
Chixiang Chen, Peisong Han, Shuo Chen, Michelle Shardell, Jing Qin
{"title":"在先验概率偏移的情况下整合外部摘要信息:在评估本质性高血压中的应用。","authors":"Chixiang Chen, Peisong Han, Shuo Chen, Michelle Shardell, Jing Qin","doi":"10.1093/biomtc/ujae090","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have witnessed a rise in the popularity of information integration without sharing of raw data. By leveraging and incorporating summary information from external sources, internal studies can achieve enhanced estimation efficiency and prediction accuracy. However, a noteworthy challenge in utilizing summary-level information is accommodating the inherent heterogeneity across diverse data sources. In this study, we delve into the issue of prior probability shift between two cohorts, wherein the difference of two data distributions depends on the outcome. We introduce a novel semi-parametric constrained optimization-based approach to integrate information within this framework, which has not been extensively explored in existing literature. Our proposed method tackles the prior probability shift by introducing the outcome-dependent selection function and effectively addresses the estimation uncertainty associated with summary information from the external source. Our approach facilitates valid inference even in the absence of a known variance-covariance estimate from the external source. Through extensive simulation studies, we observe the superiority of our method over existing ones, showcasing minimal estimation bias and reduced variance for both binary and continuous outcomes. We further demonstrate the utility of our method through its application in investigating risk factors related to essential hypertension, where the reduced estimation variability is observed after integrating summary information from an external data.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381951/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating external summary information in the presence of prior probability shift: an application to assessing essential hypertension.\",\"authors\":\"Chixiang Chen, Peisong Han, Shuo Chen, Michelle Shardell, Jing Qin\",\"doi\":\"10.1093/biomtc/ujae090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent years have witnessed a rise in the popularity of information integration without sharing of raw data. By leveraging and incorporating summary information from external sources, internal studies can achieve enhanced estimation efficiency and prediction accuracy. However, a noteworthy challenge in utilizing summary-level information is accommodating the inherent heterogeneity across diverse data sources. In this study, we delve into the issue of prior probability shift between two cohorts, wherein the difference of two data distributions depends on the outcome. We introduce a novel semi-parametric constrained optimization-based approach to integrate information within this framework, which has not been extensively explored in existing literature. Our proposed method tackles the prior probability shift by introducing the outcome-dependent selection function and effectively addresses the estimation uncertainty associated with summary information from the external source. Our approach facilitates valid inference even in the absence of a known variance-covariance estimate from the external source. Through extensive simulation studies, we observe the superiority of our method over existing ones, showcasing minimal estimation bias and reduced variance for both binary and continuous outcomes. We further demonstrate the utility of our method through its application in investigating risk factors related to essential hypertension, where the reduced estimation variability is observed after integrating summary information from an external data.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381951/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae090\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae090","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在不共享原始数据的情况下进行信息整合的做法越来越流行。通过利用和整合外部来源的摘要信息,内部研究可以提高估算效率和预测准确性。然而,利用摘要级信息的一个值得注意的挑战是如何适应不同数据源之间固有的异质性。在本研究中,我们深入探讨了两个队列之间的先验概率偏移问题,其中两个数据分布的差异取决于结果。我们引入了一种基于半参数约束优化的新方法,在此框架内整合信息,现有文献尚未对此进行广泛探讨。我们提出的方法通过引入依赖于结果的选择函数来解决先验概率偏移问题,并有效地解决了与来自外部的摘要信息相关的估计不确定性。即使在没有外部来源的已知方差-协方差估计的情况下,我们的方法也能促进有效推断。通过广泛的模拟研究,我们发现我们的方法优于现有方法,对于二元和连续结果都能显示出最小的估计偏差和更小的方差。我们进一步证明了我们的方法在调查与本质性高血压相关的风险因素时的实用性,在整合了外部数据的汇总信息后,我们观察到了估计变异性的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating external summary information in the presence of prior probability shift: an application to assessing essential hypertension.

Recent years have witnessed a rise in the popularity of information integration without sharing of raw data. By leveraging and incorporating summary information from external sources, internal studies can achieve enhanced estimation efficiency and prediction accuracy. However, a noteworthy challenge in utilizing summary-level information is accommodating the inherent heterogeneity across diverse data sources. In this study, we delve into the issue of prior probability shift between two cohorts, wherein the difference of two data distributions depends on the outcome. We introduce a novel semi-parametric constrained optimization-based approach to integrate information within this framework, which has not been extensively explored in existing literature. Our proposed method tackles the prior probability shift by introducing the outcome-dependent selection function and effectively addresses the estimation uncertainty associated with summary information from the external source. Our approach facilitates valid inference even in the absence of a known variance-covariance estimate from the external source. Through extensive simulation studies, we observe the superiority of our method over existing ones, showcasing minimal estimation bias and reduced variance for both binary and continuous outcomes. We further demonstrate the utility of our method through its application in investigating risk factors related to essential hypertension, where the reduced estimation variability is observed after integrating summary information from an external data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1