{"title":"增加膜多不饱和脂肪酸可使非小细胞肺癌对抗PD-1/PD-L1免疫疗法敏感。","authors":"Sofia La Vecchia , Simona Fontana , Iris Chiara Salaroglio , Dario Pasquale Anobile , Sabrina Digiovanni , Muhlis Akman , Niloufar Jafari , Martina Godel , Costanzo Costamagna , Cyril Corbet , Joanna Kopecka , Chiara Riganti","doi":"10.1016/j.canlet.2024.217221","DOIUrl":null,"url":null,"abstract":"<div><p>Immune checkpoints inhibitors (ICIs) as anti-PD-1/anti-PD-L1 have been approved as first-line treatment in patients with non-small cell lung cancer (NSCLC), but only 25 % of patients achieve durable response. We previously unveiled that estrogen receptor α transcriptionally up-regulates PD-L1 and aromatase inhibitors such as letrozole increase the efficacy of pembrolizumab. Here we investigated if letrozole may have additional immune-sensitizing mechanisms. We found that higher the level of PD-L1 in NSCLC, higher the activation of SREBP1c that transcriptionally increases fatty acid synthase and stearoyl-CoA desaturase enzymes, increasing the amount of polyunsaturated fatty acids (PUFAs). Letrozole further up-regulated SREBP1c-mediated transcription of lipogenic genes, and increased the amount of PUFAs, thereby leading to greater membrane fluidity and reduced binding between PD-L1 and PD-1. The same effects were observed upon supplementation with ω3-PUFA docosahexaenoic acid (DHA) that enhanced the efficacy of pembrolizumab in humanized NSCLC immune-xenografts. We suggest that PUFA enrichment in membrane phospholipids improves the efficacy of ICIs. We propose to repurpose letrozole or DHA as new immune-sensitizing agents in NSCLC.</p></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"604 ","pages":"Article 217221"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304383524006165/pdfft?md5=670af3b5b5c9eb0194223861db9cd4d2&pid=1-s2.0-S0304383524006165-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Increasing membrane polyunsaturated fatty acids sensitizes non-small cell lung cancer to anti-PD-1/PD-L1 immunotherapy\",\"authors\":\"Sofia La Vecchia , Simona Fontana , Iris Chiara Salaroglio , Dario Pasquale Anobile , Sabrina Digiovanni , Muhlis Akman , Niloufar Jafari , Martina Godel , Costanzo Costamagna , Cyril Corbet , Joanna Kopecka , Chiara Riganti\",\"doi\":\"10.1016/j.canlet.2024.217221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Immune checkpoints inhibitors (ICIs) as anti-PD-1/anti-PD-L1 have been approved as first-line treatment in patients with non-small cell lung cancer (NSCLC), but only 25 % of patients achieve durable response. We previously unveiled that estrogen receptor α transcriptionally up-regulates PD-L1 and aromatase inhibitors such as letrozole increase the efficacy of pembrolizumab. Here we investigated if letrozole may have additional immune-sensitizing mechanisms. We found that higher the level of PD-L1 in NSCLC, higher the activation of SREBP1c that transcriptionally increases fatty acid synthase and stearoyl-CoA desaturase enzymes, increasing the amount of polyunsaturated fatty acids (PUFAs). Letrozole further up-regulated SREBP1c-mediated transcription of lipogenic genes, and increased the amount of PUFAs, thereby leading to greater membrane fluidity and reduced binding between PD-L1 and PD-1. The same effects were observed upon supplementation with ω3-PUFA docosahexaenoic acid (DHA) that enhanced the efficacy of pembrolizumab in humanized NSCLC immune-xenografts. We suggest that PUFA enrichment in membrane phospholipids improves the efficacy of ICIs. We propose to repurpose letrozole or DHA as new immune-sensitizing agents in NSCLC.</p></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"604 \",\"pages\":\"Article 217221\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304383524006165/pdfft?md5=670af3b5b5c9eb0194223861db9cd4d2&pid=1-s2.0-S0304383524006165-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383524006165\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383524006165","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Increasing membrane polyunsaturated fatty acids sensitizes non-small cell lung cancer to anti-PD-1/PD-L1 immunotherapy
Immune checkpoints inhibitors (ICIs) as anti-PD-1/anti-PD-L1 have been approved as first-line treatment in patients with non-small cell lung cancer (NSCLC), but only 25 % of patients achieve durable response. We previously unveiled that estrogen receptor α transcriptionally up-regulates PD-L1 and aromatase inhibitors such as letrozole increase the efficacy of pembrolizumab. Here we investigated if letrozole may have additional immune-sensitizing mechanisms. We found that higher the level of PD-L1 in NSCLC, higher the activation of SREBP1c that transcriptionally increases fatty acid synthase and stearoyl-CoA desaturase enzymes, increasing the amount of polyunsaturated fatty acids (PUFAs). Letrozole further up-regulated SREBP1c-mediated transcription of lipogenic genes, and increased the amount of PUFAs, thereby leading to greater membrane fluidity and reduced binding between PD-L1 and PD-1. The same effects were observed upon supplementation with ω3-PUFA docosahexaenoic acid (DHA) that enhanced the efficacy of pembrolizumab in humanized NSCLC immune-xenografts. We suggest that PUFA enrichment in membrane phospholipids improves the efficacy of ICIs. We propose to repurpose letrozole or DHA as new immune-sensitizing agents in NSCLC.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.