Mauricio A. García , Pablo M. González , Alexis Aceituno , Jozef Al-Gousous
{"title":"分区药代动力学模型中卷积的新分析解决方案及其在非生物等效制剂中的应用。","authors":"Mauricio A. García , Pablo M. González , Alexis Aceituno , Jozef Al-Gousous","doi":"10.1016/j.ejps.2024.106892","DOIUrl":null,"url":null,"abstract":"<div><p>Deconvolution and convolution are powerful tools that allow decomposition and reconstruction, respectively, of plasma versus time profiles from input and impulse functions. While deconvolution have commonly used compartmental approaches (e.g., Wagner-Nelson or Loo-Riegelman), convolution most typically used the convolution integral which can be solved with numerical methods. In 2005, an analytical solution for one-compartment pharmacokinetic was proposed and has been widely used ever since. However, to the best of our knowledge, analytical solutions for drugs distributed in more than one compartment have not been reported yet. In this paper, analytical solutions for compartmental convolution from both original and exact Loo-Riegelman approaches were developed and evaluated for different scenarios. While convolution from original approach was slightly more precise than that from the exact Loo-Riegelman, both methods were extremely accurate for reconstruction of plasma profiles after respective deconvolutions. Nonetheless, convolution from exact Loo-Riegelman was easier to interpret and to be manipulated mathematically. In fact, convolution solutions for three and more compartments can be easily written with this approach. Finally, our convolution analytical solution was applied to predict the failure in bioequivalence for levonorgestrel, demonstrating that equations in this paper may be useful tools for pharmaceutical scientists.</p></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"202 ","pages":"Article 106892"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0928098724002045/pdfft?md5=599cdb275f0f3ab8df70ab8b789d9435&pid=1-s2.0-S0928098724002045-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel analytical solutions for convolution in compartmental pharmacokinetic models and application to non-bioequivalent formulations\",\"authors\":\"Mauricio A. García , Pablo M. González , Alexis Aceituno , Jozef Al-Gousous\",\"doi\":\"10.1016/j.ejps.2024.106892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deconvolution and convolution are powerful tools that allow decomposition and reconstruction, respectively, of plasma versus time profiles from input and impulse functions. While deconvolution have commonly used compartmental approaches (e.g., Wagner-Nelson or Loo-Riegelman), convolution most typically used the convolution integral which can be solved with numerical methods. In 2005, an analytical solution for one-compartment pharmacokinetic was proposed and has been widely used ever since. However, to the best of our knowledge, analytical solutions for drugs distributed in more than one compartment have not been reported yet. In this paper, analytical solutions for compartmental convolution from both original and exact Loo-Riegelman approaches were developed and evaluated for different scenarios. While convolution from original approach was slightly more precise than that from the exact Loo-Riegelman, both methods were extremely accurate for reconstruction of plasma profiles after respective deconvolutions. Nonetheless, convolution from exact Loo-Riegelman was easier to interpret and to be manipulated mathematically. In fact, convolution solutions for three and more compartments can be easily written with this approach. Finally, our convolution analytical solution was applied to predict the failure in bioequivalence for levonorgestrel, demonstrating that equations in this paper may be useful tools for pharmaceutical scientists.</p></div>\",\"PeriodicalId\":12018,\"journal\":{\"name\":\"European Journal of Pharmaceutical Sciences\",\"volume\":\"202 \",\"pages\":\"Article 106892\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0928098724002045/pdfft?md5=599cdb275f0f3ab8df70ab8b789d9435&pid=1-s2.0-S0928098724002045-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0928098724002045\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724002045","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Novel analytical solutions for convolution in compartmental pharmacokinetic models and application to non-bioequivalent formulations
Deconvolution and convolution are powerful tools that allow decomposition and reconstruction, respectively, of plasma versus time profiles from input and impulse functions. While deconvolution have commonly used compartmental approaches (e.g., Wagner-Nelson or Loo-Riegelman), convolution most typically used the convolution integral which can be solved with numerical methods. In 2005, an analytical solution for one-compartment pharmacokinetic was proposed and has been widely used ever since. However, to the best of our knowledge, analytical solutions for drugs distributed in more than one compartment have not been reported yet. In this paper, analytical solutions for compartmental convolution from both original and exact Loo-Riegelman approaches were developed and evaluated for different scenarios. While convolution from original approach was slightly more precise than that from the exact Loo-Riegelman, both methods were extremely accurate for reconstruction of plasma profiles after respective deconvolutions. Nonetheless, convolution from exact Loo-Riegelman was easier to interpret and to be manipulated mathematically. In fact, convolution solutions for three and more compartments can be easily written with this approach. Finally, our convolution analytical solution was applied to predict the failure in bioequivalence for levonorgestrel, demonstrating that equations in this paper may be useful tools for pharmaceutical scientists.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.