M. Ghalibaf, N. Pap, M. Vainio, N. Honkala, S. Rasi
{"title":"回收厌氧发酵过程中获得的短链有机酸 (SCOAs)。","authors":"M. Ghalibaf, N. Pap, M. Vainio, N. Honkala, S. Rasi","doi":"10.1016/j.mimet.2024.107031","DOIUrl":null,"url":null,"abstract":"<div><p>Short-chain organic acids (SCOAs) are the intermediates in the anaerobic fermentation process, and can be used in food, textile, and pharmaceutical industries to produce different end use products. SCOAs can be separated, purified, and concentrated by different processes, such as distillation, extraction or membrane-based systems. SCOAs production adds more profitable possibilities to an acidic fermentation process by integration these marketable acids as highly concentrated mixtures with other refinery processes. The present study investigated two approaches for recovering of SCOAs: i) the production of clarified SCOAs liquid by microfiltration (MF) and then performing their concentration by reverse osmosis (RO) and ii) the recovery and concentration by the so-called integrated neutralization and acidified reaction method. The results of MF showed that some SCOAs were retained in the retentate together with the solids. However, in the following RO treatment, SCOAs could be successfully concentrated with a yield retention of over 90 % from the SCOAs liquid. In the latter method, a color-free SCOAs liquid was obtained with an increase in the total SCOAs concentration from 23 g/L to 146 g/L.</p></div>","PeriodicalId":16409,"journal":{"name":"Journal of microbiological methods","volume":"226 ","pages":"Article 107031"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016770122400143X/pdfft?md5=2943388e82132b3204ea52ff92316efb&pid=1-s2.0-S016770122400143X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recovery of short-chain organic acids (SCOAs) obtained from anaerobic fermentation process\",\"authors\":\"M. Ghalibaf, N. Pap, M. Vainio, N. Honkala, S. Rasi\",\"doi\":\"10.1016/j.mimet.2024.107031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Short-chain organic acids (SCOAs) are the intermediates in the anaerobic fermentation process, and can be used in food, textile, and pharmaceutical industries to produce different end use products. SCOAs can be separated, purified, and concentrated by different processes, such as distillation, extraction or membrane-based systems. SCOAs production adds more profitable possibilities to an acidic fermentation process by integration these marketable acids as highly concentrated mixtures with other refinery processes. The present study investigated two approaches for recovering of SCOAs: i) the production of clarified SCOAs liquid by microfiltration (MF) and then performing their concentration by reverse osmosis (RO) and ii) the recovery and concentration by the so-called integrated neutralization and acidified reaction method. The results of MF showed that some SCOAs were retained in the retentate together with the solids. However, in the following RO treatment, SCOAs could be successfully concentrated with a yield retention of over 90 % from the SCOAs liquid. In the latter method, a color-free SCOAs liquid was obtained with an increase in the total SCOAs concentration from 23 g/L to 146 g/L.</p></div>\",\"PeriodicalId\":16409,\"journal\":{\"name\":\"Journal of microbiological methods\",\"volume\":\"226 \",\"pages\":\"Article 107031\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016770122400143X/pdfft?md5=2943388e82132b3204ea52ff92316efb&pid=1-s2.0-S016770122400143X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiological methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016770122400143X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiological methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016770122400143X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Recovery of short-chain organic acids (SCOAs) obtained from anaerobic fermentation process
Short-chain organic acids (SCOAs) are the intermediates in the anaerobic fermentation process, and can be used in food, textile, and pharmaceutical industries to produce different end use products. SCOAs can be separated, purified, and concentrated by different processes, such as distillation, extraction or membrane-based systems. SCOAs production adds more profitable possibilities to an acidic fermentation process by integration these marketable acids as highly concentrated mixtures with other refinery processes. The present study investigated two approaches for recovering of SCOAs: i) the production of clarified SCOAs liquid by microfiltration (MF) and then performing their concentration by reverse osmosis (RO) and ii) the recovery and concentration by the so-called integrated neutralization and acidified reaction method. The results of MF showed that some SCOAs were retained in the retentate together with the solids. However, in the following RO treatment, SCOAs could be successfully concentrated with a yield retention of over 90 % from the SCOAs liquid. In the latter method, a color-free SCOAs liquid was obtained with an increase in the total SCOAs concentration from 23 g/L to 146 g/L.
期刊介绍:
The Journal of Microbiological Methods publishes scholarly and original articles, notes and review articles. These articles must include novel and/or state-of-the-art methods, or significant improvements to existing methods. Novel and innovative applications of current methods that are validated and useful will also be published. JMM strives for scholarship, innovation and excellence. This demands scientific rigour, the best available methods and technologies, correctly replicated experiments/tests, the inclusion of proper controls, calibrations, and the correct statistical analysis. The presentation of the data must support the interpretation of the method/approach.
All aspects of microbiology are covered, except virology. These include agricultural microbiology, applied and environmental microbiology, bioassays, bioinformatics, biotechnology, biochemical microbiology, clinical microbiology, diagnostics, food monitoring and quality control microbiology, microbial genetics and genomics, geomicrobiology, microbiome methods regardless of habitat, high through-put sequencing methods and analysis, microbial pathogenesis and host responses, metabolomics, metagenomics, metaproteomics, microbial ecology and diversity, microbial physiology, microbial ultra-structure, microscopic and imaging methods, molecular microbiology, mycology, novel mathematical microbiology and modelling, parasitology, plant-microbe interactions, protein markers/profiles, proteomics, pyrosequencing, public health microbiology, radioisotopes applied to microbiology, robotics applied to microbiological methods,rumen microbiology, microbiological methods for space missions and extreme environments, sampling methods and samplers, soil and sediment microbiology, transcriptomics, veterinary microbiology, sero-diagnostics and typing/identification.