{"title":"基于 CasRx 的 Wnt 激活可促进肺泡再生,同时改善小鼠肺损伤模型中的肺纤维化。","authors":"Shengxi Shen, Ping Wang, Pei Wu, Pengyu Huang, Tian Chi, Wenqing Xu, Ying Xi","doi":"10.1016/j.ymthe.2024.09.008","DOIUrl":null,"url":null,"abstract":"<p><p>Wnt/β-catenin signaling is an attractive target for regenerative medicine. A powerful driver of stem cell activity and hence tissue regeneration, Wnt signaling can promote fibroblast proliferation and activation, leading to fibrosis, while prolonged Wnt signaling is potentially carcinogenic. Thus, to harness its therapeutic potential, the activation of Wnt signaling must be transient, reversible, and tissue specific. In the lung, Wnt signaling is essential for alveolar stem cell activity and alveolar regeneration, which is impaired in lung fibrosis. Activation of Wnt/β-catenin signaling in lung epithelium may have anti-fibrotic effects. Here, we used intratracheal adeno-associated virus 6 injection to selectively deliver CasRx into the lung epithelium, where it reversibly activates Wnt signaling by simultaneously degrading mRNAs encoding Axin1 and Axin2, negative regulators of Wnt/β-catenin signaling. Interestingly, CasRx-mediated Wnt activation specifically in lung epithelium not only promotes alveolar type II cell proliferation and alveolar regeneration but also inhibits lung fibrosis resulted from bleomycin-induced injury, relevant in both preventive and therapeutic settings. Our study offers an attractive strategy for treating pulmonary fibrosis, with general implications for regenerative medicine.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"3974-3989"},"PeriodicalIF":12.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury.\",\"authors\":\"Shengxi Shen, Ping Wang, Pei Wu, Pengyu Huang, Tian Chi, Wenqing Xu, Ying Xi\",\"doi\":\"10.1016/j.ymthe.2024.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wnt/β-catenin signaling is an attractive target for regenerative medicine. A powerful driver of stem cell activity and hence tissue regeneration, Wnt signaling can promote fibroblast proliferation and activation, leading to fibrosis, while prolonged Wnt signaling is potentially carcinogenic. Thus, to harness its therapeutic potential, the activation of Wnt signaling must be transient, reversible, and tissue specific. In the lung, Wnt signaling is essential for alveolar stem cell activity and alveolar regeneration, which is impaired in lung fibrosis. Activation of Wnt/β-catenin signaling in lung epithelium may have anti-fibrotic effects. Here, we used intratracheal adeno-associated virus 6 injection to selectively deliver CasRx into the lung epithelium, where it reversibly activates Wnt signaling by simultaneously degrading mRNAs encoding Axin1 and Axin2, negative regulators of Wnt/β-catenin signaling. Interestingly, CasRx-mediated Wnt activation specifically in lung epithelium not only promotes alveolar type II cell proliferation and alveolar regeneration but also inhibits lung fibrosis resulted from bleomycin-induced injury, relevant in both preventive and therapeutic settings. Our study offers an attractive strategy for treating pulmonary fibrosis, with general implications for regenerative medicine.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"3974-3989\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.09.008\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.09.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
Wnt/β-catenin信号传导是再生医学的一个诱人靶点。Wnt信号是干细胞活性的强大驱动力,因此也是组织再生的强大驱动力,它能促进成纤维细胞的增殖和活化,导致纤维化,而长时间的Wnt信号则可能致癌。因此,要利用其治疗潜力,Wnt 信号的激活必须是短暂的、可逆的和针对特定组织的。在肺部,Wnt 信号对肺泡干细胞活性和肺泡再生至关重要,而肺泡再生在肺纤维化时会受到损害。激活肺上皮细胞中的Wnt/β-catenin信号可能具有抗纤维化的作用。在这里,我们利用气管内注射AAV6选择性地将CasRx送入肺上皮细胞,通过同时降解编码Axin1和Axin2(Wnt/β-catenin信号转导的负调控因子)的mRNA,CasRx可逆地激活Wnt信号转导。有趣的是,CasRx 在肺上皮细胞中介导的 Wnt 激活不仅能促进肺泡 II 型细胞(AT2)增殖和肺泡再生,还能抑制博莱霉素诱导的肺纤维化。我们的研究为治疗肺纤维化提供了一种有吸引力的策略,对再生医学具有普遍意义。
CasRx-based Wnt activation promotes alveolar regeneration while ameliorating pulmonary fibrosis in a mouse model of lung injury.
Wnt/β-catenin signaling is an attractive target for regenerative medicine. A powerful driver of stem cell activity and hence tissue regeneration, Wnt signaling can promote fibroblast proliferation and activation, leading to fibrosis, while prolonged Wnt signaling is potentially carcinogenic. Thus, to harness its therapeutic potential, the activation of Wnt signaling must be transient, reversible, and tissue specific. In the lung, Wnt signaling is essential for alveolar stem cell activity and alveolar regeneration, which is impaired in lung fibrosis. Activation of Wnt/β-catenin signaling in lung epithelium may have anti-fibrotic effects. Here, we used intratracheal adeno-associated virus 6 injection to selectively deliver CasRx into the lung epithelium, where it reversibly activates Wnt signaling by simultaneously degrading mRNAs encoding Axin1 and Axin2, negative regulators of Wnt/β-catenin signaling. Interestingly, CasRx-mediated Wnt activation specifically in lung epithelium not only promotes alveolar type II cell proliferation and alveolar regeneration but also inhibits lung fibrosis resulted from bleomycin-induced injury, relevant in both preventive and therapeutic settings. Our study offers an attractive strategy for treating pulmonary fibrosis, with general implications for regenerative medicine.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.