Meijuan Liu, Na Li, Zhaoxue Wang, Shuo Wang, Shaoda Ren and Xiaojing Li
{"title":"通过调节 STAT3 通路合成一种作为癌症干细胞抑制剂的青霉烯醇衍生物,用于治疗卵巢癌。","authors":"Meijuan Liu, Na Li, Zhaoxue Wang, Shuo Wang, Shaoda Ren and Xiaojing Li","doi":"10.1039/D4MD00468J","DOIUrl":null,"url":null,"abstract":"<p >Accumulating evidence suggests that the root of drug chemoresistance in ovarian cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely associated with signal transducer and activator of transcription 3 (STAT3) signaling. Recently, celastrol has shown a significant anti-cancer effect on ovarian cancer, but its clinical translation is very challenging due to its oral bioavailability and high organ toxicity. In this study, a celastrol derivative (<strong>Cel-N</strong>) was synthesized to augment the overall efficacy, and its underlying mechanisms were also explored. Different ovarian cancer cells, SKOV3 and A2780, were used to evaluate and compare the anticancer effects. <strong>Cel-N</strong> displayed potent activities against all the tested ovarian cancer cells, with the lowest IC<small><sub>50</sub></small> value of 0.14–0.25 μM. Further studies showed that <strong>Cel-N</strong> effectively suppressed the colony formation and sphere formation ability, decreased the percentage of CD44<small><sup>+</sup></small>CD24<small><sup>−</sup></small> and ALDH<small><sup>+</sup></small> cells, and induced ROS production. Furthermore, western blot analysis indicated that <strong>Cel-N</strong> significantly inhibited both Tyr705 and Ser727 phosphorylation and reduced the protein expression of STAT3. In addition, <strong>Cel-N</strong> could dramatically induce apoptosis and cell cycle arrest, and inhibit migration and invasion. Importantly, <strong>Cel-N</strong> showed a potent antitumor efficacy with no or limited systemic toxicity in mice xenograft models. The anticancer effect of <strong>Cel-N</strong> is stronger than celastrol. <strong>Cel-N</strong> attenuates cancer cell stemness, inhibits the STAT3 pathway, and exerts anti-ovarian cancer effects in cell and mouse models. Our data support that <strong>Cel-N</strong> is a potent drug candidate for ovarian cancer.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3433-3443"},"PeriodicalIF":3.5970,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a celastrol derivative as a cancer stem cell inhibitor through regulation of the STAT3 pathway for treatment of ovarian cancer†\",\"authors\":\"Meijuan Liu, Na Li, Zhaoxue Wang, Shuo Wang, Shaoda Ren and Xiaojing Li\",\"doi\":\"10.1039/D4MD00468J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Accumulating evidence suggests that the root of drug chemoresistance in ovarian cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely associated with signal transducer and activator of transcription 3 (STAT3) signaling. Recently, celastrol has shown a significant anti-cancer effect on ovarian cancer, but its clinical translation is very challenging due to its oral bioavailability and high organ toxicity. In this study, a celastrol derivative (<strong>Cel-N</strong>) was synthesized to augment the overall efficacy, and its underlying mechanisms were also explored. Different ovarian cancer cells, SKOV3 and A2780, were used to evaluate and compare the anticancer effects. <strong>Cel-N</strong> displayed potent activities against all the tested ovarian cancer cells, with the lowest IC<small><sub>50</sub></small> value of 0.14–0.25 μM. Further studies showed that <strong>Cel-N</strong> effectively suppressed the colony formation and sphere formation ability, decreased the percentage of CD44<small><sup>+</sup></small>CD24<small><sup>−</sup></small> and ALDH<small><sup>+</sup></small> cells, and induced ROS production. Furthermore, western blot analysis indicated that <strong>Cel-N</strong> significantly inhibited both Tyr705 and Ser727 phosphorylation and reduced the protein expression of STAT3. In addition, <strong>Cel-N</strong> could dramatically induce apoptosis and cell cycle arrest, and inhibit migration and invasion. Importantly, <strong>Cel-N</strong> showed a potent antitumor efficacy with no or limited systemic toxicity in mice xenograft models. The anticancer effect of <strong>Cel-N</strong> is stronger than celastrol. <strong>Cel-N</strong> attenuates cancer cell stemness, inhibits the STAT3 pathway, and exerts anti-ovarian cancer effects in cell and mouse models. Our data support that <strong>Cel-N</strong> is a potent drug candidate for ovarian cancer.</p>\",\"PeriodicalId\":88,\"journal\":{\"name\":\"MedChemComm\",\"volume\":\" 10\",\"pages\":\" 3433-3443\"},\"PeriodicalIF\":3.5970,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedChemComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00468j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00468j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Synthesis of a celastrol derivative as a cancer stem cell inhibitor through regulation of the STAT3 pathway for treatment of ovarian cancer†
Accumulating evidence suggests that the root of drug chemoresistance in ovarian cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely associated with signal transducer and activator of transcription 3 (STAT3) signaling. Recently, celastrol has shown a significant anti-cancer effect on ovarian cancer, but its clinical translation is very challenging due to its oral bioavailability and high organ toxicity. In this study, a celastrol derivative (Cel-N) was synthesized to augment the overall efficacy, and its underlying mechanisms were also explored. Different ovarian cancer cells, SKOV3 and A2780, were used to evaluate and compare the anticancer effects. Cel-N displayed potent activities against all the tested ovarian cancer cells, with the lowest IC50 value of 0.14–0.25 μM. Further studies showed that Cel-N effectively suppressed the colony formation and sphere formation ability, decreased the percentage of CD44+CD24− and ALDH+ cells, and induced ROS production. Furthermore, western blot analysis indicated that Cel-N significantly inhibited both Tyr705 and Ser727 phosphorylation and reduced the protein expression of STAT3. In addition, Cel-N could dramatically induce apoptosis and cell cycle arrest, and inhibit migration and invasion. Importantly, Cel-N showed a potent antitumor efficacy with no or limited systemic toxicity in mice xenograft models. The anticancer effect of Cel-N is stronger than celastrol. Cel-N attenuates cancer cell stemness, inhibits the STAT3 pathway, and exerts anti-ovarian cancer effects in cell and mouse models. Our data support that Cel-N is a potent drug candidate for ovarian cancer.
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.