Zachary Wayne Barker, Jose Miguel Gonzalez, David K Santacruz, Jorge L Acosta-Cordero, Ryan Price, Stephani Nevarez, Thomas Canfield, Brian Elias Schuster
{"title":"用于制作小尺寸机械性能试样的六自由度飞秒激光系统。","authors":"Zachary Wayne Barker, Jose Miguel Gonzalez, David K Santacruz, Jorge L Acosta-Cordero, Ryan Price, Stephani Nevarez, Thomas Canfield, Brian Elias Schuster","doi":"10.1063/5.0218245","DOIUrl":null,"url":null,"abstract":"<p><p>We present the details of a novel ultra-short pulsed laser machining workstation that has been employed for high-throughput laser machining of small-scale mechanical property specimens. This system employs a six degrees of freedom hexapod positioning stage capable of macroscopic movements at high positional accuracy. We developed a methodology that uses quantitative image analysis to measure key parameters required to minimize the hexapod positioning and rotational error. Application of this system to laser machining of small-scale 316L stainless steel tensile specimens and ultra-high molecular weight polyethylene compressive specimens using eucentric tilt and rotation about the specimen axis will be shown, where serial laser milling at a specimen tilt angle of 10° was used to effectively eliminate any taper in the sample cross section that is typically found in laser machining.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A six degrees of freedom femtosecond laser system for fabrication of small-scale mechanical property specimens.\",\"authors\":\"Zachary Wayne Barker, Jose Miguel Gonzalez, David K Santacruz, Jorge L Acosta-Cordero, Ryan Price, Stephani Nevarez, Thomas Canfield, Brian Elias Schuster\",\"doi\":\"10.1063/5.0218245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present the details of a novel ultra-short pulsed laser machining workstation that has been employed for high-throughput laser machining of small-scale mechanical property specimens. This system employs a six degrees of freedom hexapod positioning stage capable of macroscopic movements at high positional accuracy. We developed a methodology that uses quantitative image analysis to measure key parameters required to minimize the hexapod positioning and rotational error. Application of this system to laser machining of small-scale 316L stainless steel tensile specimens and ultra-high molecular weight polyethylene compressive specimens using eucentric tilt and rotation about the specimen axis will be shown, where serial laser milling at a specimen tilt angle of 10° was used to effectively eliminate any taper in the sample cross section that is typically found in laser machining.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0218245\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0218245","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A six degrees of freedom femtosecond laser system for fabrication of small-scale mechanical property specimens.
We present the details of a novel ultra-short pulsed laser machining workstation that has been employed for high-throughput laser machining of small-scale mechanical property specimens. This system employs a six degrees of freedom hexapod positioning stage capable of macroscopic movements at high positional accuracy. We developed a methodology that uses quantitative image analysis to measure key parameters required to minimize the hexapod positioning and rotational error. Application of this system to laser machining of small-scale 316L stainless steel tensile specimens and ultra-high molecular weight polyethylene compressive specimens using eucentric tilt and rotation about the specimen axis will be shown, where serial laser milling at a specimen tilt angle of 10° was used to effectively eliminate any taper in the sample cross section that is typically found in laser machining.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.