利用减阶模型进行高保真自适应反射镜模拟。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-01 Epub Date: 2024-09-06 DOI:10.1186/s13362-024-00158-5
Bernadett Stadler, Roberto Biasi, Mauro Manetti, Andreas Obereder, Ronny Ramlau, Matteo Tintori
{"title":"利用减阶模型进行高保真自适应反射镜模拟。","authors":"Bernadett Stadler, Roberto Biasi, Mauro Manetti, Andreas Obereder, Ronny Ramlau, Matteo Tintori","doi":"10.1186/s13362-024-00158-5","DOIUrl":null,"url":null,"abstract":"<p><p>In the design process of large adaptive mirrors numerical simulations represent the first step to evaluate the system design compliance in terms of performance, stability and robustness. For the next generation of Extremely Large Telescopes increased system dimensions and bandwidths lead to the need of modeling not only the deformable mirror alone, but also all the system supporting structure or even the full telescope. The capability to perform the simulations with an acceptable amount of time and computational resources is highly dependent on finding appropriate methods to reduce the size of the resulting dynamic models. In this paper we present a framework developed together with the company Microgate to create a reduced order structural model of a large adaptive mirror as a preprocessing step to the control system simulations. The reduced dynamic model is then combined with the remaining system components allowing to simulate the full adaptive mirror in a computationally efficient way. We analyze the feasibility of our reduced models for Microgate's prototype of the adaptive mirror of the Giant Magellan Telescope.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379732/pdf/","citationCount":"0","resultStr":"{\"title\":\"High fidelity adaptive mirror simulations with reduced order models.\",\"authors\":\"Bernadett Stadler, Roberto Biasi, Mauro Manetti, Andreas Obereder, Ronny Ramlau, Matteo Tintori\",\"doi\":\"10.1186/s13362-024-00158-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the design process of large adaptive mirrors numerical simulations represent the first step to evaluate the system design compliance in terms of performance, stability and robustness. For the next generation of Extremely Large Telescopes increased system dimensions and bandwidths lead to the need of modeling not only the deformable mirror alone, but also all the system supporting structure or even the full telescope. The capability to perform the simulations with an acceptable amount of time and computational resources is highly dependent on finding appropriate methods to reduce the size of the resulting dynamic models. In this paper we present a framework developed together with the company Microgate to create a reduced order structural model of a large adaptive mirror as a preprocessing step to the control system simulations. The reduced dynamic model is then combined with the remaining system components allowing to simulate the full adaptive mirror in a computationally efficient way. We analyze the feasibility of our reduced models for Microgate's prototype of the adaptive mirror of the Giant Magellan Telescope.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379732/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13362-024-00158-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-024-00158-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在大型自适应反射镜的设计过程中,数值模拟是评估系统在性能、稳定性和鲁棒性方面是否符合设计要求的第一步。对于下一代超大望远镜,系统尺寸和带宽的增加导致不仅需要对可变形反射镜单独建模,还需要对所有系统支撑结构甚至整个望远镜建模。能否在可接受的时间和计算资源范围内进行模拟,在很大程度上取决于能否找到合适的方法来缩小动态模型的尺寸。在本文中,我们介绍了一个与 Microgate 公司共同开发的框架,用于创建大型自适应反射镜的缩小结构模型,作为控制系统模拟的预处理步骤。然后,将简化的动态模型与其余系统组件相结合,就能以计算效率高的方式模拟完整的自适应反射镜。我们分析了微门公司的巨型麦哲伦望远镜自适应反射镜原型缩小模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High fidelity adaptive mirror simulations with reduced order models.

In the design process of large adaptive mirrors numerical simulations represent the first step to evaluate the system design compliance in terms of performance, stability and robustness. For the next generation of Extremely Large Telescopes increased system dimensions and bandwidths lead to the need of modeling not only the deformable mirror alone, but also all the system supporting structure or even the full telescope. The capability to perform the simulations with an acceptable amount of time and computational resources is highly dependent on finding appropriate methods to reduce the size of the resulting dynamic models. In this paper we present a framework developed together with the company Microgate to create a reduced order structural model of a large adaptive mirror as a preprocessing step to the control system simulations. The reduced dynamic model is then combined with the remaining system components allowing to simulate the full adaptive mirror in a computationally efficient way. We analyze the feasibility of our reduced models for Microgate's prototype of the adaptive mirror of the Giant Magellan Telescope.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1