{"title":"以氟化铋结构单元为特征的强结合阴离子","authors":"Natalia Wiszowska , Dawid Falkowski , Iwona Anusiewicz , Piotr Skurski","doi":"10.1016/j.poly.2024.117214","DOIUrl":null,"url":null,"abstract":"<div><p>The stability of polynuclear superhalogen anions composed of BiF<sub>5</sub> building blocks was investigated using ab initio electronic structure methods and flexible basis sets. A comprehensive exploration of the ground state potential energy surfaces of (Bi<sub>2</sub>F<sub>11</sub>)<sup>−</sup>, (Bi<sub>3</sub>F<sub>16</sub>)<sup>−</sup> and (Bi<sub>4</sub>F<sub>21</sub>)<sup>−</sup> anions, which can be viewed as comprising BiF<sub>5</sub> fragments and an additional fluorine atom, led to the identification of their isomeric structures. It was found that the most stable isomers, predicted to dominate at room temperature, correspond to chain-like extended structures containing BiF<sub>6</sub> subunits, with fluorine ligands arranged octahedrally around Bi atoms, sharing F atoms to form Bi–F–Bi bridging linkages. The vertical electron detachment energies of the (Bi<sub>n</sub>F<sub>5n+1</sub>)<sup>−</sup> anions (n = 1–4) were found to be very high (ranging from 10.91 to 13.36 eV) and increased with the number of bismuth atoms (n) and thus the BiF<sub>5</sub> building blocks involved in the structure. Thermodynamic stability of the (Bi<sub>n</sub>F<sub>5n+1</sub>)<sup>−</sup> anions (i.e., their susceptibility to fragmentation) was also verified and discussed.</p></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":"264 ","pages":"Article 117214"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0277538724003905/pdfft?md5=3e3a2bd634bc26240962fdac972cc456&pid=1-s2.0-S0277538724003905-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strongly bound anions featuring bismuth fluoride building blocks\",\"authors\":\"Natalia Wiszowska , Dawid Falkowski , Iwona Anusiewicz , Piotr Skurski\",\"doi\":\"10.1016/j.poly.2024.117214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stability of polynuclear superhalogen anions composed of BiF<sub>5</sub> building blocks was investigated using ab initio electronic structure methods and flexible basis sets. A comprehensive exploration of the ground state potential energy surfaces of (Bi<sub>2</sub>F<sub>11</sub>)<sup>−</sup>, (Bi<sub>3</sub>F<sub>16</sub>)<sup>−</sup> and (Bi<sub>4</sub>F<sub>21</sub>)<sup>−</sup> anions, which can be viewed as comprising BiF<sub>5</sub> fragments and an additional fluorine atom, led to the identification of their isomeric structures. It was found that the most stable isomers, predicted to dominate at room temperature, correspond to chain-like extended structures containing BiF<sub>6</sub> subunits, with fluorine ligands arranged octahedrally around Bi atoms, sharing F atoms to form Bi–F–Bi bridging linkages. The vertical electron detachment energies of the (Bi<sub>n</sub>F<sub>5n+1</sub>)<sup>−</sup> anions (n = 1–4) were found to be very high (ranging from 10.91 to 13.36 eV) and increased with the number of bismuth atoms (n) and thus the BiF<sub>5</sub> building blocks involved in the structure. Thermodynamic stability of the (Bi<sub>n</sub>F<sub>5n+1</sub>)<sup>−</sup> anions (i.e., their susceptibility to fragmentation) was also verified and discussed.</p></div>\",\"PeriodicalId\":20278,\"journal\":{\"name\":\"Polyhedron\",\"volume\":\"264 \",\"pages\":\"Article 117214\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0277538724003905/pdfft?md5=3e3a2bd634bc26240962fdac972cc456&pid=1-s2.0-S0277538724003905-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polyhedron\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0277538724003905\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538724003905","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
利用 ab initio 电子结构方法和灵活的基集研究了由 BiF5 结构单元组成的多核超卤阴离子的稳定性。通过对 (Bi2F11)-、(Bi3F16)- 和 (Bi4F21)- 阴离子(可视为由 BiF5 片段和一个额外的氟原子组成)基态势能面的全面探索,确定了它们的异构体结构。研究发现,最稳定的异构体(预计在室温下占主导地位)对应于包含 BiF6 亚基的链状扩展结构,氟配体围绕 Bi 原子呈八面体排列,共享 F 原子以形成 Bi-F-Bi桥联。研究发现,(BinF5n+1)- 阴离子(n = 1-4)的垂直电子脱离能非常高(从 10.91 到 13.36 eV 不等),并且随着铋原子数(n)的增加而增加,因此结构中涉及的 BiF5 构建模块也随之增加。此外,还验证并讨论了 (BinF5n+1)- 阴离子的热力学稳定性(即它们对碎片的敏感性)。
Strongly bound anions featuring bismuth fluoride building blocks
The stability of polynuclear superhalogen anions composed of BiF5 building blocks was investigated using ab initio electronic structure methods and flexible basis sets. A comprehensive exploration of the ground state potential energy surfaces of (Bi2F11)−, (Bi3F16)− and (Bi4F21)− anions, which can be viewed as comprising BiF5 fragments and an additional fluorine atom, led to the identification of their isomeric structures. It was found that the most stable isomers, predicted to dominate at room temperature, correspond to chain-like extended structures containing BiF6 subunits, with fluorine ligands arranged octahedrally around Bi atoms, sharing F atoms to form Bi–F–Bi bridging linkages. The vertical electron detachment energies of the (BinF5n+1)− anions (n = 1–4) were found to be very high (ranging from 10.91 to 13.36 eV) and increased with the number of bismuth atoms (n) and thus the BiF5 building blocks involved in the structure. Thermodynamic stability of the (BinF5n+1)− anions (i.e., their susceptibility to fragmentation) was also verified and discussed.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.