Long Chen , Li Song , Haiyu Feng , Rediet Tesfaye Zeru , Senchun Chai , Enjun Zhu
{"title":"隐私-SF:基于编码的医学图像隐私保护分割框架","authors":"Long Chen , Li Song , Haiyu Feng , Rediet Tesfaye Zeru , Senchun Chai , Enjun Zhu","doi":"10.1016/j.imavis.2024.105246","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning is becoming increasingly popular and is being extensively used in the field of medical image analysis. However, the privacy sensitivity of medical data limits the availability of data, which constrains the advancement of medical image analysis and impedes collaboration across multiple centers. To address this problem, we propose a novel encoding-based framework, named Privacy-SF, aimed at implementing privacy-preserving segmentation for medical images. Our proposed segmentation framework consists of three CNN networks: 1) two encoding networks on the client side that encode medical images and their corresponding segmentation masks individually to remove the privacy features, 2) a unique mapping network that analyzes the content of encoded data and learns the mapping from the encoded image to the encoded mask. By sequentially encoding data and optimizing the mapping network, our approach ensures privacy protection for images and masks during both the training and inference phases of medical image analysis. Additionally, to further improve the segmentation performance, we carefully design augmentation strategies specifically for encoded data based on its sequence nature. Extensive experiments conducted on five datasets with different modalities demonstrate excellent performance in privacy-preserving segmentation and multi-center collaboration. Furthermore, the analysis of encoded data and the experiment of model inversion attacks validate the privacy-preserving capability of our approach.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"151 ","pages":"Article 105246"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-SF: An encoding-based privacy-preserving segmentation framework for medical images\",\"authors\":\"Long Chen , Li Song , Haiyu Feng , Rediet Tesfaye Zeru , Senchun Chai , Enjun Zhu\",\"doi\":\"10.1016/j.imavis.2024.105246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning is becoming increasingly popular and is being extensively used in the field of medical image analysis. However, the privacy sensitivity of medical data limits the availability of data, which constrains the advancement of medical image analysis and impedes collaboration across multiple centers. To address this problem, we propose a novel encoding-based framework, named Privacy-SF, aimed at implementing privacy-preserving segmentation for medical images. Our proposed segmentation framework consists of three CNN networks: 1) two encoding networks on the client side that encode medical images and their corresponding segmentation masks individually to remove the privacy features, 2) a unique mapping network that analyzes the content of encoded data and learns the mapping from the encoded image to the encoded mask. By sequentially encoding data and optimizing the mapping network, our approach ensures privacy protection for images and masks during both the training and inference phases of medical image analysis. Additionally, to further improve the segmentation performance, we carefully design augmentation strategies specifically for encoded data based on its sequence nature. Extensive experiments conducted on five datasets with different modalities demonstrate excellent performance in privacy-preserving segmentation and multi-center collaboration. Furthermore, the analysis of encoded data and the experiment of model inversion attacks validate the privacy-preserving capability of our approach.</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"151 \",\"pages\":\"Article 105246\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003512\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003512","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Privacy-SF: An encoding-based privacy-preserving segmentation framework for medical images
Deep learning is becoming increasingly popular and is being extensively used in the field of medical image analysis. However, the privacy sensitivity of medical data limits the availability of data, which constrains the advancement of medical image analysis and impedes collaboration across multiple centers. To address this problem, we propose a novel encoding-based framework, named Privacy-SF, aimed at implementing privacy-preserving segmentation for medical images. Our proposed segmentation framework consists of three CNN networks: 1) two encoding networks on the client side that encode medical images and their corresponding segmentation masks individually to remove the privacy features, 2) a unique mapping network that analyzes the content of encoded data and learns the mapping from the encoded image to the encoded mask. By sequentially encoding data and optimizing the mapping network, our approach ensures privacy protection for images and masks during both the training and inference phases of medical image analysis. Additionally, to further improve the segmentation performance, we carefully design augmentation strategies specifically for encoded data based on its sequence nature. Extensive experiments conducted on five datasets with different modalities demonstrate excellent performance in privacy-preserving segmentation and multi-center collaboration. Furthermore, the analysis of encoded data and the experiment of model inversion attacks validate the privacy-preserving capability of our approach.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.