{"title":"用于伪装物体探测的搜索和恢复网络","authors":"Guangrui Liu, Wei Wu","doi":"10.1016/j.imavis.2024.105247","DOIUrl":null,"url":null,"abstract":"<div><p>Camouflaged object detection aims to accurately identify objects blending into the background. However, existing methods often struggle, especially with small object or multiple objects, due to their reliance on singular strategies. To address this, we introduce a novel Search and Recovery Network (SRNet) using a bionic approach and auxiliary features. SRNet comprises three key modules: the Region Search Module (RSM), Boundary Recovery Module (BRM), and Camouflaged Object Predictor (COP). The RSM mimics predator behavior to locate potential object regions, enhancing object location detection. The BRM refines texture features and recovers object boundaries. The COP fuse multilevel features to predict final segmentation maps. Experimental results on three benchmark datasets show SRNet's superiority over SOTA models, particularly with small and multiple objects. Notably, SRNet achieves performance improvements without significantly increasing model parameters. Moreover, the method exhibits promising performance in downstream tasks such as defect detection, polyp segmentation and military camouflage detection.</p></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"151 ","pages":"Article 105247"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Search and recovery network for camouflaged object detection\",\"authors\":\"Guangrui Liu, Wei Wu\",\"doi\":\"10.1016/j.imavis.2024.105247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Camouflaged object detection aims to accurately identify objects blending into the background. However, existing methods often struggle, especially with small object or multiple objects, due to their reliance on singular strategies. To address this, we introduce a novel Search and Recovery Network (SRNet) using a bionic approach and auxiliary features. SRNet comprises three key modules: the Region Search Module (RSM), Boundary Recovery Module (BRM), and Camouflaged Object Predictor (COP). The RSM mimics predator behavior to locate potential object regions, enhancing object location detection. The BRM refines texture features and recovers object boundaries. The COP fuse multilevel features to predict final segmentation maps. Experimental results on three benchmark datasets show SRNet's superiority over SOTA models, particularly with small and multiple objects. Notably, SRNet achieves performance improvements without significantly increasing model parameters. Moreover, the method exhibits promising performance in downstream tasks such as defect detection, polyp segmentation and military camouflage detection.</p></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"151 \",\"pages\":\"Article 105247\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885624003524\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624003524","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Search and recovery network for camouflaged object detection
Camouflaged object detection aims to accurately identify objects blending into the background. However, existing methods often struggle, especially with small object or multiple objects, due to their reliance on singular strategies. To address this, we introduce a novel Search and Recovery Network (SRNet) using a bionic approach and auxiliary features. SRNet comprises three key modules: the Region Search Module (RSM), Boundary Recovery Module (BRM), and Camouflaged Object Predictor (COP). The RSM mimics predator behavior to locate potential object regions, enhancing object location detection. The BRM refines texture features and recovers object boundaries. The COP fuse multilevel features to predict final segmentation maps. Experimental results on three benchmark datasets show SRNet's superiority over SOTA models, particularly with small and multiple objects. Notably, SRNet achieves performance improvements without significantly increasing model parameters. Moreover, the method exhibits promising performance in downstream tasks such as defect detection, polyp segmentation and military camouflage detection.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.