Halie B. O'Farrell, Elizabeth A. Babcock, Kevin J. McCarthy
{"title":"墨西哥湾珊瑚礁底层延绳钓渔业中常见鲨鱼物种的混获缓解措施","authors":"Halie B. O'Farrell, Elizabeth A. Babcock, Kevin J. McCarthy","doi":"10.1002/mcf2.10310","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>The Gulf of Mexico (GOM) reef bottom longline fishery typically not only targets groupers and snappers but also interacts with 27 species of sharks, which are primarily discarded as bycatch. Slow growth, late maturity, and low fecundity in a landscape of increasing fishing pressure make sharks comparatively more susceptible to overfishing and endangered status than other fishes. The purpose of this study was to determine which gear and/or environmental variables best predict the shark catch per set for commonly caught shark species in the GOM reef bottom longline fishery.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We considered 12 commonly caught shark species that vary from the abundant Atlantic Sharpnose Shark <i>Rhizoprionodon terraenovae</i> to the critically endangered Scalloped Hammerhead <i>Sphyrna lewini</i>. Catch per set, effort, gear, and environmental data were taken from the National Oceanic and Atmospheric Administration National Marine Fisheries Service observer dataset for the GOM reef bottom longline fishery (2009–2017) and were used to fit generalized additive models. The Bayesian information criterion and 10-fold cross-validation were used to select the best set of variables that predicted catch per set to determine gear configurations, fisher activities, and environmental conditions contributing to higher shark catch per unit effort. We modeled each species individually, all species combined, and species grouped by similar ecology.</p>\n </section>\n \n <section>\n \n <h3> Result</h3>\n \n <p>Gear and fishing method variables were consistently included in the best predictive models across species and were the only potential basis for a single strategy that could decrease bycatch across all 12 species. Patterns of environmental variables were only consistent across species with similar ecology and habitat.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Sharks as a group should not be lumped together, as the effects of mitigation measures become confounded and directly managing trade-offs between species when minimizing bycatch becomes impossible. Focusing on gear rather than environmental variables is the best apparent option to potentially reduce shark catch per set across commonly caught species while minimizing trade-offs.</p>\n </section>\n </div>","PeriodicalId":51257,"journal":{"name":"Marine and Coastal Fisheries","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mcf2.10310","citationCount":"0","resultStr":"{\"title\":\"Bycatch mitigation for commonly caught shark species in the Gulf of Mexico reef bottom longline fishery\",\"authors\":\"Halie B. O'Farrell, Elizabeth A. Babcock, Kevin J. McCarthy\",\"doi\":\"10.1002/mcf2.10310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>The Gulf of Mexico (GOM) reef bottom longline fishery typically not only targets groupers and snappers but also interacts with 27 species of sharks, which are primarily discarded as bycatch. Slow growth, late maturity, and low fecundity in a landscape of increasing fishing pressure make sharks comparatively more susceptible to overfishing and endangered status than other fishes. The purpose of this study was to determine which gear and/or environmental variables best predict the shark catch per set for commonly caught shark species in the GOM reef bottom longline fishery.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We considered 12 commonly caught shark species that vary from the abundant Atlantic Sharpnose Shark <i>Rhizoprionodon terraenovae</i> to the critically endangered Scalloped Hammerhead <i>Sphyrna lewini</i>. Catch per set, effort, gear, and environmental data were taken from the National Oceanic and Atmospheric Administration National Marine Fisheries Service observer dataset for the GOM reef bottom longline fishery (2009–2017) and were used to fit generalized additive models. The Bayesian information criterion and 10-fold cross-validation were used to select the best set of variables that predicted catch per set to determine gear configurations, fisher activities, and environmental conditions contributing to higher shark catch per unit effort. We modeled each species individually, all species combined, and species grouped by similar ecology.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Result</h3>\\n \\n <p>Gear and fishing method variables were consistently included in the best predictive models across species and were the only potential basis for a single strategy that could decrease bycatch across all 12 species. Patterns of environmental variables were only consistent across species with similar ecology and habitat.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Sharks as a group should not be lumped together, as the effects of mitigation measures become confounded and directly managing trade-offs between species when minimizing bycatch becomes impossible. Focusing on gear rather than environmental variables is the best apparent option to potentially reduce shark catch per set across commonly caught species while minimizing trade-offs.</p>\\n </section>\\n </div>\",\"PeriodicalId\":51257,\"journal\":{\"name\":\"Marine and Coastal Fisheries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mcf2.10310\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine and Coastal Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mcf2.10310\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Coastal Fisheries","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mcf2.10310","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Bycatch mitigation for commonly caught shark species in the Gulf of Mexico reef bottom longline fishery
Objective
The Gulf of Mexico (GOM) reef bottom longline fishery typically not only targets groupers and snappers but also interacts with 27 species of sharks, which are primarily discarded as bycatch. Slow growth, late maturity, and low fecundity in a landscape of increasing fishing pressure make sharks comparatively more susceptible to overfishing and endangered status than other fishes. The purpose of this study was to determine which gear and/or environmental variables best predict the shark catch per set for commonly caught shark species in the GOM reef bottom longline fishery.
Methods
We considered 12 commonly caught shark species that vary from the abundant Atlantic Sharpnose Shark Rhizoprionodon terraenovae to the critically endangered Scalloped Hammerhead Sphyrna lewini. Catch per set, effort, gear, and environmental data were taken from the National Oceanic and Atmospheric Administration National Marine Fisheries Service observer dataset for the GOM reef bottom longline fishery (2009–2017) and were used to fit generalized additive models. The Bayesian information criterion and 10-fold cross-validation were used to select the best set of variables that predicted catch per set to determine gear configurations, fisher activities, and environmental conditions contributing to higher shark catch per unit effort. We modeled each species individually, all species combined, and species grouped by similar ecology.
Result
Gear and fishing method variables were consistently included in the best predictive models across species and were the only potential basis for a single strategy that could decrease bycatch across all 12 species. Patterns of environmental variables were only consistent across species with similar ecology and habitat.
Conclusion
Sharks as a group should not be lumped together, as the effects of mitigation measures become confounded and directly managing trade-offs between species when minimizing bycatch becomes impossible. Focusing on gear rather than environmental variables is the best apparent option to potentially reduce shark catch per set across commonly caught species while minimizing trade-offs.
期刊介绍:
Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science publishes original and innovative research that synthesizes information on biological organization across spatial and temporal scales to promote ecologically sound fisheries science and management. This open-access, online journal published by the American Fisheries Society provides an international venue for studies of marine, coastal, and estuarine fisheries, with emphasis on species'' performance and responses to perturbations in their environment, and promotes the development of ecosystem-based fisheries science and management.