Lang Bu, Huan Wang, Shuishen Zhang, Yi Zhang, Miaowen Liu, Zhengkun Zhang, Xueji Wu, Qiwei Jiang, Lei Wang, Wei Xie, Miao He, Zhengran Zhou, Chao Cheng, Jianping Guo
{"title":"靶向 APT2 可改善 MAVS 棕榈酰化和抗病毒先天免疫力","authors":"Lang Bu, Huan Wang, Shuishen Zhang, Yi Zhang, Miaowen Liu, Zhengkun Zhang, Xueji Wu, Qiwei Jiang, Lei Wang, Wei Xie, Miao He, Zhengran Zhou, Chao Cheng, Jianping Guo","doi":"10.1016/j.molcel.2024.08.014","DOIUrl":null,"url":null,"abstract":"<p>Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.</p>","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"4 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting APT2 improves MAVS palmitoylation and antiviral innate immunity\",\"authors\":\"Lang Bu, Huan Wang, Shuishen Zhang, Yi Zhang, Miaowen Liu, Zhengkun Zhang, Xueji Wu, Qiwei Jiang, Lei Wang, Wei Xie, Miao He, Zhengran Zhou, Chao Cheng, Jianping Guo\",\"doi\":\"10.1016/j.molcel.2024.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.</p>\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.08.014\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.08.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
先天免疫是人类抵御病毒和微生物感染的主要防御手段。细胞代谢物(尤其是脂肪酸)对抗病毒先天免疫的确切影响在很大程度上仍然难以捉摸。在这里,通过筛选代谢物库,发现棕榈酸(PA)是人类细胞抗病毒感染的关键调节剂。从机理上讲,棕榈酸能诱导线粒体抗病毒信号蛋白(MAVS)棕榈酰化、聚集和随后的活化,从而增强先天性免疫反应。棕榈酰转移酶 ZDHHC24 可催化 MAVS 的棕榈酰化,从而促进 TBK1-IRF3- 干扰素(IFN)通路,尤其是在 PA 刺激或高脂饮食小鼠模型条件下,从而导致抗病毒免疫反应。此外,APT2 可使 MAVS 去棕榈酰化,从而抑制抗病毒信号传导,这表明其抑制剂(如 ML349)可有效逆转 MAVS 在抗病毒感染中的激活。这些发现强调了 PA 在通过 MAVS 棕榈酰化调节抗病毒先天性免疫中的关键作用,并为提高 PA 摄入量或靶向 APT2 抗病毒感染提供了策略。
Targeting APT2 improves MAVS palmitoylation and antiviral innate immunity
Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.