Merusomayajula V. Kishore, T. Siva Rao, G. N. D. Kumari
{"title":"作为 SARS-CoV-2 主要蛋白酶 (Mpro) 潜在抑制剂的 HCV 和 RNA 合成抑制剂抗生素药物的硅学研究","authors":"Merusomayajula V. Kishore, T. Siva Rao, G. N. D. Kumari","doi":"10.1186/s43094-024-00685-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Since December 2019, a global crisis has unfolded with the emergence of a new strain of coronavirus known as SARS-CoV-2. This pandemic has afflicted hundreds of millions of people worldwide, resulting in millions of fatalities. In response to this urgent healthcare crisis, extensive efforts have been made to discover inhibitors of the COVID-19 virus. Given the structural similarities between SARS-CoV-2 and HCV, drugs approved by the FDA for treating HCV were selected and subjected to in silico testing against the SARS-CoV-2 virus, with Remdesivir used as the standard for validation. Drug repurposing and phytochemical testing have also been conducted to identify potential candidates capable of inhibiting or suppressing the infection caused by the coronavirus. The time constraints imposed by the pandemic necessitated the in silico analysis of existing drug molecules against the coronavirus. Eleven HCV drugs approved by the FDA, along with one RNA synthesis inhibitor antibiotic drug, were tested using the in silico method due to their structural similarities with HCV and the SARS-CoV-2 virus.</p><h3>Results</h3><p>Molecular docking and MD simulation studies were performed for all selected compounds. Binding energies, root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, and molecular mechanics generalized born surface area were calculated. Based on docking and MD simulation studies all the selected compounds have shown good binding energy values with Mpro (PDB ID: 6LU7). No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA.</p><h3>Conclusions</h3><p>This study shows that FDA-approved HCV drugs can be used as for SARS-COVID-19 inhibitors.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00685-3","citationCount":"0","resultStr":"{\"title\":\"In silico investigation of HCV and RNA synthesis inhibitor antibiotic drugs as potential inhibitors of SARS‑CoV‑2 main protease (Mpro)\",\"authors\":\"Merusomayajula V. Kishore, T. Siva Rao, G. N. D. Kumari\",\"doi\":\"10.1186/s43094-024-00685-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Since December 2019, a global crisis has unfolded with the emergence of a new strain of coronavirus known as SARS-CoV-2. This pandemic has afflicted hundreds of millions of people worldwide, resulting in millions of fatalities. In response to this urgent healthcare crisis, extensive efforts have been made to discover inhibitors of the COVID-19 virus. Given the structural similarities between SARS-CoV-2 and HCV, drugs approved by the FDA for treating HCV were selected and subjected to in silico testing against the SARS-CoV-2 virus, with Remdesivir used as the standard for validation. Drug repurposing and phytochemical testing have also been conducted to identify potential candidates capable of inhibiting or suppressing the infection caused by the coronavirus. The time constraints imposed by the pandemic necessitated the in silico analysis of existing drug molecules against the coronavirus. Eleven HCV drugs approved by the FDA, along with one RNA synthesis inhibitor antibiotic drug, were tested using the in silico method due to their structural similarities with HCV and the SARS-CoV-2 virus.</p><h3>Results</h3><p>Molecular docking and MD simulation studies were performed for all selected compounds. Binding energies, root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, and molecular mechanics generalized born surface area were calculated. Based on docking and MD simulation studies all the selected compounds have shown good binding energy values with Mpro (PDB ID: 6LU7). No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA.</p><h3>Conclusions</h3><p>This study shows that FDA-approved HCV drugs can be used as for SARS-COVID-19 inhibitors.</p></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00685-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-024-00685-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-024-00685-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
In silico investigation of HCV and RNA synthesis inhibitor antibiotic drugs as potential inhibitors of SARS‑CoV‑2 main protease (Mpro)
Background
Since December 2019, a global crisis has unfolded with the emergence of a new strain of coronavirus known as SARS-CoV-2. This pandemic has afflicted hundreds of millions of people worldwide, resulting in millions of fatalities. In response to this urgent healthcare crisis, extensive efforts have been made to discover inhibitors of the COVID-19 virus. Given the structural similarities between SARS-CoV-2 and HCV, drugs approved by the FDA for treating HCV were selected and subjected to in silico testing against the SARS-CoV-2 virus, with Remdesivir used as the standard for validation. Drug repurposing and phytochemical testing have also been conducted to identify potential candidates capable of inhibiting or suppressing the infection caused by the coronavirus. The time constraints imposed by the pandemic necessitated the in silico analysis of existing drug molecules against the coronavirus. Eleven HCV drugs approved by the FDA, along with one RNA synthesis inhibitor antibiotic drug, were tested using the in silico method due to their structural similarities with HCV and the SARS-CoV-2 virus.
Results
Molecular docking and MD simulation studies were performed for all selected compounds. Binding energies, root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, and molecular mechanics generalized born surface area were calculated. Based on docking and MD simulation studies all the selected compounds have shown good binding energy values with Mpro (PDB ID: 6LU7). No toxicity measurements are required for these drugs since they were previously tested prior to their approval by the FDA.
Conclusions
This study shows that FDA-approved HCV drugs can be used as for SARS-COVID-19 inhibitors.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.