智能城市消防监控:带有智能代理的深度状态空间模型

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Smart Cities Pub Date : 2024-06-21 DOI:10.1049/smc2.12086
A. Rehman, F. Saeed, M. M. Rathore, A. Paul, J.-M. Kang
{"title":"智能城市消防监控:带有智能代理的深度状态空间模型","authors":"A. Rehman,&nbsp;F. Saeed,&nbsp;M. M. Rathore,&nbsp;A. Paul,&nbsp;J.-M. Kang","doi":"10.1049/smc2.12086","DOIUrl":null,"url":null,"abstract":"<p>In the realm of smart city development, the integration of intelligent agents has emerged as a pivotal strategy to enhance the efficacy of search methodologies. This study introduces a novel state-space navigational model employing intelligent agents tailored specifically for fire surveillance in urban environments. Central to this model is the fusion of a convolutional neural network and multilayer perceptron, enabling accurate fire detection and localisation. Leveraging this capability, the intelligent agent proactively navigates through the search space, guided by the shortest path to the identified fire location. The utilisation of the A* algorithm as the search mechanism underscores the efficiency and efficacy of our proposed approach. Implemented in Python and Gephi, our method surpasses traditional search algorithms, both informed and uninformed, demonstrating its effectiveness in navigating urban landscapes for fire surveillance. This research study contributes significantly to the field by offering a robust solution for proactive fire detection and surveillance in smart city environments, thereby enhancing public safety and urban resilience.</p>","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12086","citationCount":"0","resultStr":"{\"title\":\"Smart city fire surveillance: A deep state-space model with intelligent agents\",\"authors\":\"A. Rehman,&nbsp;F. Saeed,&nbsp;M. M. Rathore,&nbsp;A. Paul,&nbsp;J.-M. Kang\",\"doi\":\"10.1049/smc2.12086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the realm of smart city development, the integration of intelligent agents has emerged as a pivotal strategy to enhance the efficacy of search methodologies. This study introduces a novel state-space navigational model employing intelligent agents tailored specifically for fire surveillance in urban environments. Central to this model is the fusion of a convolutional neural network and multilayer perceptron, enabling accurate fire detection and localisation. Leveraging this capability, the intelligent agent proactively navigates through the search space, guided by the shortest path to the identified fire location. The utilisation of the A* algorithm as the search mechanism underscores the efficiency and efficacy of our proposed approach. Implemented in Python and Gephi, our method surpasses traditional search algorithms, both informed and uninformed, demonstrating its effectiveness in navigating urban landscapes for fire surveillance. This research study contributes significantly to the field by offering a robust solution for proactive fire detection and surveillance in smart city environments, thereby enhancing public safety and urban resilience.</p>\",\"PeriodicalId\":34740,\"journal\":{\"name\":\"IET Smart Cities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12086\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Smart Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在智慧城市发展领域,整合智能代理已成为提高搜索方法效率的关键策略。本研究介绍了一种新颖的状态空间导航模型,该模型采用了专门为城市环境火灾监控量身定制的智能代理。该模型的核心是融合卷积神经网络和多层感知器,从而实现准确的火灾探测和定位。利用这种能力,智能代理在搜索空间中主动导航,以最短路径为导向,确定火灾地点。利用 A* 算法作为搜索机制,凸显了我们提出的方法的效率和功效。通过在 Python 和 Gephi 中实施,我们的方法超越了传统的搜索算法,无论是有信息的还是无信息的搜索算法,都证明了它在城市景观火灾监控导航中的有效性。这项研究为智能城市环境中的主动火灾探测和监控提供了一个强大的解决方案,从而提高了公共安全和城市复原力,为该领域做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart city fire surveillance: A deep state-space model with intelligent agents

In the realm of smart city development, the integration of intelligent agents has emerged as a pivotal strategy to enhance the efficacy of search methodologies. This study introduces a novel state-space navigational model employing intelligent agents tailored specifically for fire surveillance in urban environments. Central to this model is the fusion of a convolutional neural network and multilayer perceptron, enabling accurate fire detection and localisation. Leveraging this capability, the intelligent agent proactively navigates through the search space, guided by the shortest path to the identified fire location. The utilisation of the A* algorithm as the search mechanism underscores the efficiency and efficacy of our proposed approach. Implemented in Python and Gephi, our method surpasses traditional search algorithms, both informed and uninformed, demonstrating its effectiveness in navigating urban landscapes for fire surveillance. This research study contributes significantly to the field by offering a robust solution for proactive fire detection and surveillance in smart city environments, thereby enhancing public safety and urban resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
期刊最新文献
Guest Editorial: Smart cities 2.0: How Artificial Intelligence and Internet of Things are transforming urban living A hybrid attention‐based long short‐term memory fast model for thermal regulation of smart residential buildings A collaborative WSN‐IoT‐Animal for large‐scale data collection Advancing smart tourism destinations: A case study using bidirectional encoder representations from transformers‐based occupancy predictions in torrevieja (Spain) Smart city fire surveillance: A deep state-space model with intelligent agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1