二维 3d 磷酸盐金属纳米片上甘油到甲酸盐的电催化和选择性氧化及负碳制氢

IF 5.7 Q2 CHEMISTRY, PHYSICAL ACS Materials Au Pub Date : 2024-06-04 DOI:10.1021/acsmaterialsau.4c0002410.1021/acsmaterialsau.4c00024
Inderjeet Chauhan, Pothoppurathu M. Vijay, Ravi Ranjan, Kshirodra Kumar Patra and Chinnakonda S. Gopinath*, 
{"title":"二维 3d 磷酸盐金属纳米片上甘油到甲酸盐的电催化和选择性氧化及负碳制氢","authors":"Inderjeet Chauhan,&nbsp;Pothoppurathu M. Vijay,&nbsp;Ravi Ranjan,&nbsp;Kshirodra Kumar Patra and Chinnakonda S. Gopinath*,&nbsp;","doi":"10.1021/acsmaterialsau.4c0002410.1021/acsmaterialsau.4c00024","DOIUrl":null,"url":null,"abstract":"<p >In the landscape of green hydrogen production, alkaline water electrolysis is a well-established, yet not-so-cost-effective, technique due to the high overpotential requirement for the oxygen evolution reaction (OER). A low-voltage approach is proposed to overcome not only the OER challenge by favorably oxidizing abundant feedstock molecules with an earth-abundant catalyst but also to reduce the energy input required for hydrogen production. This alternative process not only generates carbon-negative green H<sub>2</sub> but also yields concurrent value-added products (VAPs), thereby maximizing economic advantages and transforming waste into valuable resources. The essence of this study lies in a novel electrocatalyst material. In the present study, unique and two-dimensional (2D) ultrathin nanosheet phosphates featuring first-row transition metals are synthesized by a one-step solvothermal method, and evaluated for the electrocatalytic glycerol oxidation reaction (GLYOR) in an alkaline medium and simultaneous H<sub>2</sub> production. Co<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (CoP), Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (CuP), and Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (NiP) exhibit 2D sheet morphologies, while FePO<sub>4</sub> (FeP) displays an entirely different snowflake-like morphology. The 2D nanosheet morphology provides a large surface area and a high density of active sites. As a GLYOR catalyst, CoP ultrathin (∼5 nm) nanosheets exhibit remarkably low onset potential at 1.12 V (vs RHE), outperforming that of NiP, FeP, and CuP around 1.25 V (vs RHE). CoP displays 82% selective formate production, indicating a superior capacity for C–C cleavage and concurrent oxidation; this property could be utilized to valorize larger molecules. CoP also exhibits highly sustainable electrochemical stability for a continuous 200 h GLYOR operation, yielding 6.5 L of H<sub>2</sub> production with a 4 cm<sup>2</sup> electrode and 98 ± 0.5% Faradaic efficiency. The present study advances our understanding of efficient GLYOR catalysts and underscores the potential of sustainable and economically viable green hydrogen production methodologies.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00024","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic and Selective Oxidation of Glycerol to Formate on 2D 3d-Metal Phosphate Nanosheets and Carbon-Negative Hydrogen Generation\",\"authors\":\"Inderjeet Chauhan,&nbsp;Pothoppurathu M. Vijay,&nbsp;Ravi Ranjan,&nbsp;Kshirodra Kumar Patra and Chinnakonda S. Gopinath*,&nbsp;\",\"doi\":\"10.1021/acsmaterialsau.4c0002410.1021/acsmaterialsau.4c00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the landscape of green hydrogen production, alkaline water electrolysis is a well-established, yet not-so-cost-effective, technique due to the high overpotential requirement for the oxygen evolution reaction (OER). A low-voltage approach is proposed to overcome not only the OER challenge by favorably oxidizing abundant feedstock molecules with an earth-abundant catalyst but also to reduce the energy input required for hydrogen production. This alternative process not only generates carbon-negative green H<sub>2</sub> but also yields concurrent value-added products (VAPs), thereby maximizing economic advantages and transforming waste into valuable resources. The essence of this study lies in a novel electrocatalyst material. In the present study, unique and two-dimensional (2D) ultrathin nanosheet phosphates featuring first-row transition metals are synthesized by a one-step solvothermal method, and evaluated for the electrocatalytic glycerol oxidation reaction (GLYOR) in an alkaline medium and simultaneous H<sub>2</sub> production. Co<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (CoP), Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (CuP), and Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (NiP) exhibit 2D sheet morphologies, while FePO<sub>4</sub> (FeP) displays an entirely different snowflake-like morphology. The 2D nanosheet morphology provides a large surface area and a high density of active sites. As a GLYOR catalyst, CoP ultrathin (∼5 nm) nanosheets exhibit remarkably low onset potential at 1.12 V (vs RHE), outperforming that of NiP, FeP, and CuP around 1.25 V (vs RHE). CoP displays 82% selective formate production, indicating a superior capacity for C–C cleavage and concurrent oxidation; this property could be utilized to valorize larger molecules. CoP also exhibits highly sustainable electrochemical stability for a continuous 200 h GLYOR operation, yielding 6.5 L of H<sub>2</sub> production with a 4 cm<sup>2</sup> electrode and 98 ± 0.5% Faradaic efficiency. The present study advances our understanding of efficient GLYOR catalysts and underscores the potential of sustainable and economically viable green hydrogen production methodologies.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在绿色制氢领域,碱性水电解是一种成熟但成本效益不高的技术,原因是氧进化反应(OER)需要较高的过电位。我们提出了一种低电压方法,不仅可以通过使用富土催化剂有利地氧化丰富的原料分子来克服氧进化反应的挑战,还可以减少制氢所需的能量输入。这种替代工艺不仅能产生负碳绿色氢气,还能同时产生增值产品 (VAP),从而最大限度地发挥经济优势,变废为宝。这项研究的精髓在于一种新型电催化剂材料。本研究采用一步溶热法合成了独特的二维(2D)超薄纳米片磷酸盐,其中含有第一排过渡金属,并对其在碱性介质中的甘油氧化反应(GLYOR)以及同时产生 H2 的电催化性能进行了评估。Co3(PO4)2 (CoP)、Cu3(PO4)2 (CuP) 和 Ni3(PO4)2 (NiP) 呈现出二维片状形态,而 FePO4 (FeP) 则呈现出完全不同的雪花状形态。二维纳米片形态提供了较大的表面积和高密度的活性位点。作为一种 GLYOR 催化剂,CoP 超薄(∼5 nm)纳米片的起始电位非常低,仅为 1.12 V(相对于 RHE),超过了 NiP、FeP 和 CuP 在 1.25 V 左右的起始电位(相对于 RHE)。CoP 显示出 82% 的甲酸选择性生成,表明其具有卓越的 C-C 裂解和同步氧化能力;这一特性可用于较大分子的估值。CoP 还在连续 200 小时的 GLYOR 操作中表现出高度可持续的电化学稳定性,4 平方厘米的电极可产生 6.5 升 H2,法拉第效率为 98 ± 0.5%。本研究加深了我们对高效 GLYOR 催化剂的了解,并强调了可持续且经济可行的绿色制氢方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrocatalytic and Selective Oxidation of Glycerol to Formate on 2D 3d-Metal Phosphate Nanosheets and Carbon-Negative Hydrogen Generation

In the landscape of green hydrogen production, alkaline water electrolysis is a well-established, yet not-so-cost-effective, technique due to the high overpotential requirement for the oxygen evolution reaction (OER). A low-voltage approach is proposed to overcome not only the OER challenge by favorably oxidizing abundant feedstock molecules with an earth-abundant catalyst but also to reduce the energy input required for hydrogen production. This alternative process not only generates carbon-negative green H2 but also yields concurrent value-added products (VAPs), thereby maximizing economic advantages and transforming waste into valuable resources. The essence of this study lies in a novel electrocatalyst material. In the present study, unique and two-dimensional (2D) ultrathin nanosheet phosphates featuring first-row transition metals are synthesized by a one-step solvothermal method, and evaluated for the electrocatalytic glycerol oxidation reaction (GLYOR) in an alkaline medium and simultaneous H2 production. Co3(PO4)2 (CoP), Cu3(PO4)2 (CuP), and Ni3(PO4)2 (NiP) exhibit 2D sheet morphologies, while FePO4 (FeP) displays an entirely different snowflake-like morphology. The 2D nanosheet morphology provides a large surface area and a high density of active sites. As a GLYOR catalyst, CoP ultrathin (∼5 nm) nanosheets exhibit remarkably low onset potential at 1.12 V (vs RHE), outperforming that of NiP, FeP, and CuP around 1.25 V (vs RHE). CoP displays 82% selective formate production, indicating a superior capacity for C–C cleavage and concurrent oxidation; this property could be utilized to valorize larger molecules. CoP also exhibits highly sustainable electrochemical stability for a continuous 200 h GLYOR operation, yielding 6.5 L of H2 production with a 4 cm2 electrode and 98 ± 0.5% Faradaic efficiency. The present study advances our understanding of efficient GLYOR catalysts and underscores the potential of sustainable and economically viable green hydrogen production methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
期刊最新文献
Issue Editorial Masthead Issue Publication Information Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? Understanding Defect-Mediated Ion Migration in Semiconductors using Atomistic Simulations and Machine Learning High-Entropy Alloys in Catalysis: Progress, Challenges, and Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1