使用二氧化碳的碳酸丙烯酯合成路线:DFT 和热力学分析

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Structure Pub Date : 2024-09-04 DOI:10.1016/j.molstruc.2024.139935
{"title":"使用二氧化碳的碳酸丙烯酯合成路线:DFT 和热力学分析","authors":"","doi":"10.1016/j.molstruc.2024.139935","DOIUrl":null,"url":null,"abstract":"<div><p>Propylene carbonate (PC) is utilized to improve performance and stability in lithium-ion batteries as an electrolyte component and as a high-performance solvent in paints, varnishes, and adhesives. It is a versatile chemical used in many different industries. It also functions as a plasticizer in polymers and a solvent in pharmaceutical and cosmetic formulations. In the current work, chemical equilibrium analyses of a number of potential processes involved in the synthesis of PC were conducted. To examine the thermodynamic viability of all five approaches, the fluctuation of <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msubsup><mi>G</mi><mi>m</mi><mi>o</mi></msubsup></mrow></math></span> with temperature for the key processes of PC synthesis was investigated in a specific temperature range of 25 °C-180 °C and at 1 bar and 60 bar pressures. The heat capacity values were estimated using the Rozicka-Domalski method. Benson Group-Increment Theory (BGIT) was used to evaluate the unknown <span><math><mrow><msub><mstyle><mi>Δ</mi></mstyle><mi>f</mi></msub><mi>H</mi></mrow></math></span> for a molecule. By examining the impact of temperature (25 °C-180 °C) and pressure (0–100 bars) on chemical equilibrium constant and equilibrium conversion of reactants, the main reactions of PC synthesis pathways were compared. It was discovered that the one-pot synthesis route and the o-chloropropanol and CO<sub>2</sub> approach were superior. The DFT calculations were performed to study the energy changes taking place to convert propylene, glycerol, and propylene glycol (PG) into PC. Both thermodynamic and DFT calculations proved that the PG and urea route is the least favorable for synthesizing PC.</p></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propylene carbonate synthesis routes using CO2: DFT and thermodynamic analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.molstruc.2024.139935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Propylene carbonate (PC) is utilized to improve performance and stability in lithium-ion batteries as an electrolyte component and as a high-performance solvent in paints, varnishes, and adhesives. It is a versatile chemical used in many different industries. It also functions as a plasticizer in polymers and a solvent in pharmaceutical and cosmetic formulations. In the current work, chemical equilibrium analyses of a number of potential processes involved in the synthesis of PC were conducted. To examine the thermodynamic viability of all five approaches, the fluctuation of <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msubsup><mi>G</mi><mi>m</mi><mi>o</mi></msubsup></mrow></math></span> with temperature for the key processes of PC synthesis was investigated in a specific temperature range of 25 °C-180 °C and at 1 bar and 60 bar pressures. The heat capacity values were estimated using the Rozicka-Domalski method. Benson Group-Increment Theory (BGIT) was used to evaluate the unknown <span><math><mrow><msub><mstyle><mi>Δ</mi></mstyle><mi>f</mi></msub><mi>H</mi></mrow></math></span> for a molecule. By examining the impact of temperature (25 °C-180 °C) and pressure (0–100 bars) on chemical equilibrium constant and equilibrium conversion of reactants, the main reactions of PC synthesis pathways were compared. It was discovered that the one-pot synthesis route and the o-chloropropanol and CO<sub>2</sub> approach were superior. The DFT calculations were performed to study the energy changes taking place to convert propylene, glycerol, and propylene glycol (PG) into PC. Both thermodynamic and DFT calculations proved that the PG and urea route is the least favorable for synthesizing PC.</p></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002228602402444X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228602402444X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

碳酸丙烯酯(PC)作为电解质成分可用于提高锂离子电池的性能和稳定性,还可作为高性能溶剂用于油漆、清漆和粘合剂。它是一种用途广泛的化学品,可用于许多不同的行业。它还可用作聚合物中的增塑剂以及药品和化妆品配方中的溶剂。在目前的工作中,我们对 PC 合成过程中的一些潜在工艺进行了化学平衡分析。为了检验所有五种方法的热力学可行性,我们在 25 °C-180 °C 的特定温度范围内以及 1 bar 和 60 bar 的压力下,研究了 PC 合成关键过程中 ΔGmo 随温度变化的情况。热容值采用 Rozicka-Domalski 方法进行估算。Benson Group-Increment Theory (BGIT) 被用来评估分子的未知 ΔfH。通过研究温度(25 ℃-180 ℃)和压力(0-100 巴)对化学平衡常数和反应物平衡转化率的影响,比较了 PC 合成途径的主要反应。结果发现,一锅合成路线和邻氯丙醇与二氧化碳的合成路线更为优越。通过 DFT 计算研究了丙烯、甘油和丙二醇 (PG) 转化为 PC 的能量变化。热力学和 DFT 计算均证明,丙二醇和尿素路线最不利于合成 PC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Propylene carbonate synthesis routes using CO2: DFT and thermodynamic analysis

Propylene carbonate (PC) is utilized to improve performance and stability in lithium-ion batteries as an electrolyte component and as a high-performance solvent in paints, varnishes, and adhesives. It is a versatile chemical used in many different industries. It also functions as a plasticizer in polymers and a solvent in pharmaceutical and cosmetic formulations. In the current work, chemical equilibrium analyses of a number of potential processes involved in the synthesis of PC were conducted. To examine the thermodynamic viability of all five approaches, the fluctuation of ΔGmo with temperature for the key processes of PC synthesis was investigated in a specific temperature range of 25 °C-180 °C and at 1 bar and 60 bar pressures. The heat capacity values were estimated using the Rozicka-Domalski method. Benson Group-Increment Theory (BGIT) was used to evaluate the unknown ΔfH for a molecule. By examining the impact of temperature (25 °C-180 °C) and pressure (0–100 bars) on chemical equilibrium constant and equilibrium conversion of reactants, the main reactions of PC synthesis pathways were compared. It was discovered that the one-pot synthesis route and the o-chloropropanol and CO2 approach were superior. The DFT calculations were performed to study the energy changes taking place to convert propylene, glycerol, and propylene glycol (PG) into PC. Both thermodynamic and DFT calculations proved that the PG and urea route is the least favorable for synthesizing PC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
期刊最新文献
A tetrahedral zinc(II) coordination polymer: Synthesis, characterisation, and application in ascorbic Acid fluorescence sensing Molecular modeling aided design, synthesis, and activity evaluation of N-arylindole derivatives as GPR52 agonists Construction of a new ionic Co(II) coordination polymer and its composite with CNTs showing dual electrochemical sensing to AA and Fe3+ Preparation and characterization of a new nanocomposite, Genista Scorpius fibers/Poly (diallyldimethylammonium chloride)/zero valent silver: Application to the catalytic reduction of hazardous azo dyes in water Homogeneous and heterogeneous ionic liquids catalyze CO2 cycloaddition reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1