通过对具有度量变化的解耦模型或简单模型的风险敏感控制,实现耦合系统的稳健分散控制

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Systems & Control Letters Pub Date : 2024-09-09 DOI:10.1016/j.sysconle.2024.105915
{"title":"通过对具有度量变化的解耦模型或简单模型的风险敏感控制,实现耦合系统的稳健分散控制","authors":"","doi":"10.1016/j.sysconle.2024.105915","DOIUrl":null,"url":null,"abstract":"<div><p>Decentralized stochastic control problems with local information involve problems where multiple agents and subsystems which are coupled via dynamics and/or cost are present. Typically, however, the dynamics of such couplings is complex and difficult to precisely model, leading to questions on robustness in control design. Additionally, when such a coupling can be modeled, the problem arrived at is typically challenging and non-convex, due to decentralization of information. In this paper, we develop a robustness framework for optimal decentralized control of interacting agents, where we show that a decentralized control problem with interacting agents can be robustly designed by considering a risk-sensitive version of non-interacting agents/particles. This leads to a tractable robust formulation where we give a bound on the value of the cost function in terms of the risk-sensitive cost function for the non-interacting case plus a term involving the “strength” of the interaction as measured by relative entropy. We will build on Gaussian measure theory and an associated variational equality. A particular application includes mean-field models consisting of (a generally large number of) interacting agents which are often hard to solve for the case with small or moderate numbers of agents, leading to an interest in effective approximations and robustness. By adapting a risk-sensitivity parameter, we also robustly control a non-symmetrically interacting problem with mean-field cost by one which is symmetric with a risk-sensitive criterion, and in the limit of small interactions, show the stability of optimal solutions to perturbations.</p></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167691124002032/pdfft?md5=5baa81faa293593d45fe0a662d44ec03&pid=1-s2.0-S0167691124002032-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust decentralized control of coupled systems via risk sensitive control of decoupled or simple models with measure change\",\"authors\":\"\",\"doi\":\"10.1016/j.sysconle.2024.105915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decentralized stochastic control problems with local information involve problems where multiple agents and subsystems which are coupled via dynamics and/or cost are present. Typically, however, the dynamics of such couplings is complex and difficult to precisely model, leading to questions on robustness in control design. Additionally, when such a coupling can be modeled, the problem arrived at is typically challenging and non-convex, due to decentralization of information. In this paper, we develop a robustness framework for optimal decentralized control of interacting agents, where we show that a decentralized control problem with interacting agents can be robustly designed by considering a risk-sensitive version of non-interacting agents/particles. This leads to a tractable robust formulation where we give a bound on the value of the cost function in terms of the risk-sensitive cost function for the non-interacting case plus a term involving the “strength” of the interaction as measured by relative entropy. We will build on Gaussian measure theory and an associated variational equality. A particular application includes mean-field models consisting of (a generally large number of) interacting agents which are often hard to solve for the case with small or moderate numbers of agents, leading to an interest in effective approximations and robustness. By adapting a risk-sensitivity parameter, we also robustly control a non-symmetrically interacting problem with mean-field cost by one which is symmetric with a risk-sensitive criterion, and in the limit of small interactions, show the stability of optimal solutions to perturbations.</p></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167691124002032/pdfft?md5=5baa81faa293593d45fe0a662d44ec03&pid=1-s2.0-S0167691124002032-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691124002032\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002032","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

具有局部信息的分散随机控制问题涉及多个通过动态和/或成本耦合的代理和子系统。然而,通常情况下,这种耦合的动态是复杂的,难以精确建模,从而导致控制设计的鲁棒性问题。此外,当这种耦合可以建模时,由于信息的分散性,所得出的问题通常具有挑战性和非凸性。在本文中,我们为交互代理的最优分散控制开发了一个鲁棒性框架,表明通过考虑非交互代理/粒子的风险敏感版本,可以鲁棒地设计具有交互代理的分散控制问题。这就产生了一个可行的稳健公式,我们用非相互作用情况下的风险敏感成本函数加上一个涉及相互作用 "强度 "的项,给出了成本函数值的约束,该 "强度 "是用相对熵来衡量的。我们将以高斯计量理论和相关的变分相等为基础。一个特殊的应用包括由(通常是大量)相互作用的代理组成的均场模型,这些模型通常难以解决代理数量较少或适中的情况,从而导致对有效近似和稳健性的兴趣。通过调整风险敏感性参数,我们还能用一个与风险敏感性准则对称的平均场成本问题稳健地控制一个非对称相互作用问题,并在小相互作用的极限中显示出最优解对扰动的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust decentralized control of coupled systems via risk sensitive control of decoupled or simple models with measure change

Decentralized stochastic control problems with local information involve problems where multiple agents and subsystems which are coupled via dynamics and/or cost are present. Typically, however, the dynamics of such couplings is complex and difficult to precisely model, leading to questions on robustness in control design. Additionally, when such a coupling can be modeled, the problem arrived at is typically challenging and non-convex, due to decentralization of information. In this paper, we develop a robustness framework for optimal decentralized control of interacting agents, where we show that a decentralized control problem with interacting agents can be robustly designed by considering a risk-sensitive version of non-interacting agents/particles. This leads to a tractable robust formulation where we give a bound on the value of the cost function in terms of the risk-sensitive cost function for the non-interacting case plus a term involving the “strength” of the interaction as measured by relative entropy. We will build on Gaussian measure theory and an associated variational equality. A particular application includes mean-field models consisting of (a generally large number of) interacting agents which are often hard to solve for the case with small or moderate numbers of agents, leading to an interest in effective approximations and robustness. By adapting a risk-sensitivity parameter, we also robustly control a non-symmetrically interacting problem with mean-field cost by one which is symmetric with a risk-sensitive criterion, and in the limit of small interactions, show the stability of optimal solutions to perturbations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
期刊最新文献
Robust control of time-delayed stochastic switched systems with dwell Data-driven control of nonlinear systems: An online sequential approach Optimal impulse control problems with time delays: An illustrative example Inverse reinforcement learning methods for linear differential games Min–max group consensus of discrete-time multi-agent systems under directed random networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1