用于前提选择的图序列学习

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Journal of Symbolic Computation Pub Date : 2024-08-27 DOI:10.1016/j.jsc.2024.102376
Edvard K. Holden, Konstantin Korovin
{"title":"用于前提选择的图序列学习","authors":"Edvard K. Holden,&nbsp;Konstantin Korovin","doi":"10.1016/j.jsc.2024.102376","DOIUrl":null,"url":null,"abstract":"<div><p>Premise selection is crucial for large theory reasoning with automated theorem provers as the sheer size of the problems quickly leads to resource exhaustion. This paper proposes a premise selection method inspired by the machine learning domain of image captioning, where language models automatically generate a suitable caption for a given image. Likewise, we attempt to generate the sequence of axioms required to construct the proof of a given conjecture. In our <em>axiom captioning</em> approach, a pre-trained graph neural network is combined with a language model via transfer learning to encapsulate both the inter-axiom and conjecture-axiom relationships. We evaluate different configurations of our method and experience a 14% improvement in the number of solved problems over a baseline.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0747717124000804/pdfft?md5=f758e854b5cedd39b04e5e1431d3d6d8&pid=1-s2.0-S0747717124000804-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graph sequence learning for premise selection\",\"authors\":\"Edvard K. Holden,&nbsp;Konstantin Korovin\",\"doi\":\"10.1016/j.jsc.2024.102376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Premise selection is crucial for large theory reasoning with automated theorem provers as the sheer size of the problems quickly leads to resource exhaustion. This paper proposes a premise selection method inspired by the machine learning domain of image captioning, where language models automatically generate a suitable caption for a given image. Likewise, we attempt to generate the sequence of axioms required to construct the proof of a given conjecture. In our <em>axiom captioning</em> approach, a pre-trained graph neural network is combined with a language model via transfer learning to encapsulate both the inter-axiom and conjecture-axiom relationships. We evaluate different configurations of our method and experience a 14% improvement in the number of solved problems over a baseline.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000804/pdfft?md5=f758e854b5cedd39b04e5e1431d3d6d8&pid=1-s2.0-S0747717124000804-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000804\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000804","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

前提选择对于使用自动定理证明器进行大型理论推理至关重要,因为问题的庞大规模很快就会导致资源耗尽。本文提出了一种前提选择方法,其灵感来源于图像标题的机器学习领域,即语言模型自动为给定图像生成合适的标题。同样,我们也尝试生成构建给定猜想证明所需的公理序列。在我们的公理标题方法中,通过迁移学习将预先训练好的图神经网络与语言模型相结合,以囊括公理间关系和猜想与公理间关系。我们对我们方法的不同配置进行了评估,结果发现与基线相比,解决问题的数量提高了 14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph sequence learning for premise selection

Premise selection is crucial for large theory reasoning with automated theorem provers as the sheer size of the problems quickly leads to resource exhaustion. This paper proposes a premise selection method inspired by the machine learning domain of image captioning, where language models automatically generate a suitable caption for a given image. Likewise, we attempt to generate the sequence of axioms required to construct the proof of a given conjecture. In our axiom captioning approach, a pre-trained graph neural network is combined with a language model via transfer learning to encapsulate both the inter-axiom and conjecture-axiom relationships. We evaluate different configurations of our method and experience a 14% improvement in the number of solved problems over a baseline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
期刊最新文献
Persistent components in Canny's generalized characteristic polynomial Coupled cluster degree of the Grassmannian Mixed volumes of networks with binomial steady-states Creative telescoping for hypergeometric double sums On nonnegative invariant quartics in type A
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1