Vitor Yonamine Lee , Aline Vilar Machado Nils , Bruna Petrucelli Arruda , Gilberto Fernando Xavier , Maria Inês Nogueira , Lívia Clemente Motta-Teixeira , Silvia Honda Takada
{"title":"孕期自发跑轮运动可预防新生儿缺氧引起的躯体和神经发育改变","authors":"Vitor Yonamine Lee , Aline Vilar Machado Nils , Bruna Petrucelli Arruda , Gilberto Fernando Xavier , Maria Inês Nogueira , Lívia Clemente Motta-Teixeira , Silvia Honda Takada","doi":"10.1016/j.ibneur.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>About 15–20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia.</p></div><div><h3>Methods</h3><p>spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24–36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75.</p></div><div><h3>Results</h3><p>gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring.</p></div><div><h3>Conclusion</h3><p>spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.</p></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667242124000770/pdfft?md5=c7138664cf6f01fd9fbb8b156b21d778&pid=1-s2.0-S2667242124000770-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations\",\"authors\":\"Vitor Yonamine Lee , Aline Vilar Machado Nils , Bruna Petrucelli Arruda , Gilberto Fernando Xavier , Maria Inês Nogueira , Lívia Clemente Motta-Teixeira , Silvia Honda Takada\",\"doi\":\"10.1016/j.ibneur.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>About 15–20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia.</p></div><div><h3>Methods</h3><p>spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24–36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75.</p></div><div><h3>Results</h3><p>gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring.</p></div><div><h3>Conclusion</h3><p>spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.</p></div>\",\"PeriodicalId\":13195,\"journal\":{\"name\":\"IBRO Neuroscience Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667242124000770/pdfft?md5=c7138664cf6f01fd9fbb8b156b21d778&pid=1-s2.0-S2667242124000770-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBRO Neuroscience Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667242124000770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242124000770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Spontaneous running wheel exercise during pregnancy prevents later neonatal-anoxia-induced somatic and neurodevelopmental alterations
Introduction
About 15–20 % of babies that suffer perinatal asphyxia die and around 25 % of the survivors exhibit permanent neural outcomes. Minimization of this global health problem has been warranted. This study investigated if the offspring of pregnant female rats allowed to spontaneously exercise on running wheels along a 11-day pregnancy period were protected for somatic and neurodevelopmental disturbs that usually follow neonatal anoxia.
Methods
spontaneous exercise was applied to female rats which were housed in cages allowing free access to running wheels along a 11-day pregnancy period. Their offspring were submitted to anoxia 24–36 h after birth. Somatic and sensory-motor development of the pups were recorded until postnatal day 21 (P21). Myelin basic protein (MBP)-stained areas of sensory and motor cortices were measured at P21. Neuronal nuclei (NeuN)-immunopositive cells and synapsin-I levels in hippocampal formation were estimated at P21 and P75.
Results
gestational exercise and / or neonatal anoxia increased the weight and the size of the pups. In addition, gestational exercise accelerated somatic and sensory-motor development of the pups and protected them against neonatal-anoxia-induced delay in development. Further, neonatal anoxia reduced MBP stained area in the secondary motor cortex and decreased hippocampal neuronal estimates and synapsin-I levels at P21; gestational exercise prevented these effects. Therefore, spontaneous exercise along pregnancy is a valuable strategy to prevent neonatal-anoxia-induced disturbs in the offspring.
Conclusion
spontaneous gestational running wheel exercise protects against neonatal anoxia-induced disturbs in the offspring, including (1) physical and neurobehavioral developmental impairments, and (2) hippocampal and cortical changes. Thus, spontaneous exercise during pregnancy may represent a valuable strategy to prevent disturbs which usually follow neonatal anoxia.