{"title":"鞍点问题惯性加速初等二元算法的非啮合收敛速率","authors":"Xin He , Nan-Jing Huang , Ya-Ping Fang","doi":"10.1016/j.cnsns.2024.108289","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as <span><math><mrow><msub><mrow><mo>min</mo></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mo>max</mo></mrow><mrow><mi>y</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>〈</mo><mi>K</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. Remarkably, both functions <span><math><mi>f</mi></math></span> and <span><math><mi>g</mi></math></span> exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that <span><math><mi>f</mi></math></span> is convex and <span><math><mi>g</mi></math></span> is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> convergence rate, where <span><math><mi>k</mi></math></span> represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100757042400474X/pdfft?md5=1e9e5c48fc9e2a5ef1beb31a18232e80&pid=1-s2.0-S100757042400474X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-ergodic convergence rate of an inertial accelerated primal–dual algorithm for saddle point problems\",\"authors\":\"Xin He , Nan-Jing Huang , Ya-Ping Fang\",\"doi\":\"10.1016/j.cnsns.2024.108289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as <span><math><mrow><msub><mrow><mo>min</mo></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mo>max</mo></mrow><mrow><mi>y</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>〈</mo><mi>K</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. Remarkably, both functions <span><math><mi>f</mi></math></span> and <span><math><mi>g</mi></math></span> exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that <span><math><mi>f</mi></math></span> is convex and <span><math><mi>g</mi></math></span> is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> convergence rate, where <span><math><mi>k</mi></math></span> represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S100757042400474X/pdfft?md5=1e9e5c48fc9e2a5ef1beb31a18232e80&pid=1-s2.0-S100757042400474X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042400474X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042400474X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文设计了一种惯性加速初等二元算法来解决凸凹鞍点问题,该问题可表述为 minxmaxyf(x)+〈Kx,y〉-g(y)。值得注意的是,函数 f 和 g 都表现出一种复合结构,将 "非光滑"+"光滑 "成分结合在一起。在部分强凸的假设下,即 f 是凸的,g 是强凸的,我们引入了一种基于内斯特罗夫外推法的新型惯性加速初等二元算法。该算法可简化为无约束优化问题的两种经典加速前向后向方法。我们证明,所提出的算法达到了非啮合的 O(1/k2) 收敛率,其中 k 代表迭代次数。几个数值实验验证了我们提出的算法的效率。
Non-ergodic convergence rate of an inertial accelerated primal–dual algorithm for saddle point problems
In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as . Remarkably, both functions and exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that is convex and is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic convergence rate, where represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.