鞍点问题惯性加速初等二元算法的非啮合收敛速率

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED Communications in Nonlinear Science and Numerical Simulation Pub Date : 2024-08-22 DOI:10.1016/j.cnsns.2024.108289
Xin He , Nan-Jing Huang , Ya-Ping Fang
{"title":"鞍点问题惯性加速初等二元算法的非啮合收敛速率","authors":"Xin He ,&nbsp;Nan-Jing Huang ,&nbsp;Ya-Ping Fang","doi":"10.1016/j.cnsns.2024.108289","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as <span><math><mrow><msub><mrow><mo>min</mo></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mo>max</mo></mrow><mrow><mi>y</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>〈</mo><mi>K</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. Remarkably, both functions <span><math><mi>f</mi></math></span> and <span><math><mi>g</mi></math></span> exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that <span><math><mi>f</mi></math></span> is convex and <span><math><mi>g</mi></math></span> is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> convergence rate, where <span><math><mi>k</mi></math></span> represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100757042400474X/pdfft?md5=1e9e5c48fc9e2a5ef1beb31a18232e80&pid=1-s2.0-S100757042400474X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-ergodic convergence rate of an inertial accelerated primal–dual algorithm for saddle point problems\",\"authors\":\"Xin He ,&nbsp;Nan-Jing Huang ,&nbsp;Ya-Ping Fang\",\"doi\":\"10.1016/j.cnsns.2024.108289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as <span><math><mrow><msub><mrow><mo>min</mo></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mo>max</mo></mrow><mrow><mi>y</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>〈</mo><mi>K</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>. Remarkably, both functions <span><math><mi>f</mi></math></span> and <span><math><mi>g</mi></math></span> exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that <span><math><mi>f</mi></math></span> is convex and <span><math><mi>g</mi></math></span> is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> convergence rate, where <span><math><mi>k</mi></math></span> represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S100757042400474X/pdfft?md5=1e9e5c48fc9e2a5ef1beb31a18232e80&pid=1-s2.0-S100757042400474X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042400474X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042400474X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了一种惯性加速初等二元算法来解决凸凹鞍点问题,该问题可表述为 minxmaxyf(x)+〈Kx,y〉-g(y)。值得注意的是,函数 f 和 g 都表现出一种复合结构,将 "非光滑"+"光滑 "成分结合在一起。在部分强凸的假设下,即 f 是凸的,g 是强凸的,我们引入了一种基于内斯特罗夫外推法的新型惯性加速初等二元算法。该算法可简化为无约束优化问题的两种经典加速前向后向方法。我们证明,所提出的算法达到了非啮合的 O(1/k2) 收敛率,其中 k 代表迭代次数。几个数值实验验证了我们提出的算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-ergodic convergence rate of an inertial accelerated primal–dual algorithm for saddle point problems

In this paper, we design an inertial accelerated primal–dual algorithm to address the convex–concave saddle point problem, which is formulated as minxmaxyf(x)+Kx,yg(y). Remarkably, both functions f and g exhibit a composite structure, combining “nonsmooth” + “smooth” components. Under the assumption of partially strong convexity in the sense that f is convex and g is strongly convex, we introduce a novel inertial accelerated primal–dual algorithm based on Nesterov’s extrapolation. This algorithm can be reduced to two classical accelerated forward–backward methods for unconstrained optimization problem. We show that the proposed algorithm achieves a non-ergodic O(1/k2) convergence rate, where k represents the number of iterations. Several numerical experiments validate the efficiency of our proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
期刊最新文献
Fractional derivative of Hermite fractal splines on the fractional-order delayed neural networks synchronization An optimal nonlinear fractional order controller for passive/active base isolation building equipped with friction-tuned mass dampers Existence of global attractor in reaction–diffusion model of obesity-induced Alzheimer’s disease and its control strategies A stabilized finite volume method based on the rotational pressure correction projection for the time-dependent incompressible MHD equations Structure-preserving weighted BDF2 methods for anisotropic Cahn–Hilliard model: Uniform/variable-time-steps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1