医疗传感器系统的细粒度漏洞检测

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Internet of Things Pub Date : 2024-09-03 DOI:10.1016/j.iot.2024.101362
Le Sun , Yueyuan Wang , Huiyun Li , Ghulam Muhammad
{"title":"医疗传感器系统的细粒度漏洞检测","authors":"Le Sun ,&nbsp;Yueyuan Wang ,&nbsp;Huiyun Li ,&nbsp;Ghulam Muhammad","doi":"10.1016/j.iot.2024.101362","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Things (IoT) has revolutionized the healthcare system by connecting medical sensors to the internet, while also posing challenges to the security of medical sensor networks (MSN). Given the extreme sensitivity of medical data, any vulnerability may result in data breaches and misuse, impacting patient safety and privacy. Therefore, safeguarding MSN security is critical. As medical sensor devices rely on smart healthcare software systems for data management and communication, precisely detecting system code vulnerabilities is essential to ensuring network security. Effective software vulnerability detection targets two key objectives: (i) achieving high accuracy and (ii) directly identifying vulnerable code lines for developers to fix. To address these challenges, we introduce Vulcoder, a novel vulnerability-oriented, encoder-driven model based on the Bidirectional Encoder Representations from Transformers (BERT) architecture. We propose a one-to-one mapping function to capture code semantics through abstract syntax trees (AST). Combined with multi-head attention, Vulcoder achieves precise function- and line-level detection of software vulnerabilities in MSN. This accelerates the vulnerability remediation process, thereby strengthening network security. Experimental results on various datasets demonstrate that Vulcoder outperforms previous models in identifying vulnerabilities within MSN. Specifically, it achieves a 1%–419% improvement in function-level prediction F1 scores and a 12.5%–380% increase in line-level localization precision. Therefore, Vulcoder helps enhance security defenses and safeguard patient privacy in MSN, facilitating the development of smart healthcare.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101362"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542660524003032/pdfft?md5=ec517a1daef40dd544058b39166a1eae&pid=1-s2.0-S2542660524003032-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fine-grained vulnerability detection for medical sensor systems\",\"authors\":\"Le Sun ,&nbsp;Yueyuan Wang ,&nbsp;Huiyun Li ,&nbsp;Ghulam Muhammad\",\"doi\":\"10.1016/j.iot.2024.101362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Internet of Things (IoT) has revolutionized the healthcare system by connecting medical sensors to the internet, while also posing challenges to the security of medical sensor networks (MSN). Given the extreme sensitivity of medical data, any vulnerability may result in data breaches and misuse, impacting patient safety and privacy. Therefore, safeguarding MSN security is critical. As medical sensor devices rely on smart healthcare software systems for data management and communication, precisely detecting system code vulnerabilities is essential to ensuring network security. Effective software vulnerability detection targets two key objectives: (i) achieving high accuracy and (ii) directly identifying vulnerable code lines for developers to fix. To address these challenges, we introduce Vulcoder, a novel vulnerability-oriented, encoder-driven model based on the Bidirectional Encoder Representations from Transformers (BERT) architecture. We propose a one-to-one mapping function to capture code semantics through abstract syntax trees (AST). Combined with multi-head attention, Vulcoder achieves precise function- and line-level detection of software vulnerabilities in MSN. This accelerates the vulnerability remediation process, thereby strengthening network security. Experimental results on various datasets demonstrate that Vulcoder outperforms previous models in identifying vulnerabilities within MSN. Specifically, it achieves a 1%–419% improvement in function-level prediction F1 scores and a 12.5%–380% increase in line-level localization precision. Therefore, Vulcoder helps enhance security defenses and safeguard patient privacy in MSN, facilitating the development of smart healthcare.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"28 \",\"pages\":\"Article 101362\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2542660524003032/pdfft?md5=ec517a1daef40dd544058b39166a1eae&pid=1-s2.0-S2542660524003032-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524003032\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003032","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)通过将医疗传感器连接到互联网,彻底改变了医疗系统,同时也对医疗传感器网络(MSN)的安全性提出了挑战。鉴于医疗数据的极端敏感性,任何漏洞都可能导致数据泄露和滥用,影响患者的安全和隐私。因此,保障 MSN 安全至关重要。由于医疗传感器设备依赖智能医疗软件系统进行数据管理和通信,因此精确检测系统代码漏洞对确保网络安全至关重要。有效的软件漏洞检测有两个关键目标:(i) 实现高精确度;(ii) 直接识别有漏洞的代码行,以便开发人员进行修复。为了应对这些挑战,我们引入了 Vulcoder,这是一种新颖的以漏洞为导向的编码器驱动模型,基于双向编码器表示变换器(BERT)架构。我们提出了一种一对一的映射功能,通过抽象语法树(AST)来捕捉代码语义。Vulcoder 与多头关注相结合,实现了对 MSN 中软件漏洞的函数级和行级精确检测。这加快了漏洞修复过程,从而加强了网络安全。各种数据集的实验结果表明,Vulcoder 在识别 MSN 中的漏洞方面优于之前的模型。具体来说,它在函数级预测 F1 分数上提高了 1%-419%,在行级定位精度上提高了 12.5%-380%。因此,Vulcoder 有助于加强 MSN 的安全防御和保护患者隐私,促进智能医疗的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine-grained vulnerability detection for medical sensor systems

The Internet of Things (IoT) has revolutionized the healthcare system by connecting medical sensors to the internet, while also posing challenges to the security of medical sensor networks (MSN). Given the extreme sensitivity of medical data, any vulnerability may result in data breaches and misuse, impacting patient safety and privacy. Therefore, safeguarding MSN security is critical. As medical sensor devices rely on smart healthcare software systems for data management and communication, precisely detecting system code vulnerabilities is essential to ensuring network security. Effective software vulnerability detection targets two key objectives: (i) achieving high accuracy and (ii) directly identifying vulnerable code lines for developers to fix. To address these challenges, we introduce Vulcoder, a novel vulnerability-oriented, encoder-driven model based on the Bidirectional Encoder Representations from Transformers (BERT) architecture. We propose a one-to-one mapping function to capture code semantics through abstract syntax trees (AST). Combined with multi-head attention, Vulcoder achieves precise function- and line-level detection of software vulnerabilities in MSN. This accelerates the vulnerability remediation process, thereby strengthening network security. Experimental results on various datasets demonstrate that Vulcoder outperforms previous models in identifying vulnerabilities within MSN. Specifically, it achieves a 1%–419% improvement in function-level prediction F1 scores and a 12.5%–380% increase in line-level localization precision. Therefore, Vulcoder helps enhance security defenses and safeguard patient privacy in MSN, facilitating the development of smart healthcare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
期刊最新文献
Mitigating smart contract vulnerabilities in electronic toll collection using blockchain security LBTMA: An integrated P4-enabled framework for optimized traffic management in SD-IoT networks AI-based autonomous UAV swarm system for weed detection and treatment: Enhancing organic orange orchard efficiency with agriculture 5.0 A consortium blockchain-edge enabled authentication scheme for underwater acoustic network (UAN) Is artificial intelligence a new battleground for cybersecurity?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1