嵌入掺杂 N 的碳中的新型晶体 Bi/ 非晶态 Bi2O3 混合纳米粒子用于高性能锂离子电池阳极

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-09-10 DOI:10.1016/j.jpcs.2024.112330
{"title":"嵌入掺杂 N 的碳中的新型晶体 Bi/ 非晶态 Bi2O3 混合纳米粒子用于高性能锂离子电池阳极","authors":"","doi":"10.1016/j.jpcs.2024.112330","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, novel crystalline Bi/amorphous Bi<sub>2</sub>O<sub>3</sub> hybrid nanoparticles (Bi/a-Bi<sub>2</sub>O<sub>3</sub>) are embedded into an N-doped carbon (Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C) by a simple ball-milling and subsequent carbonization process to stabilize the structure and enhance the conductivity of the Bi/a-Bi<sub>2</sub>O<sub>3</sub> anode during lithium storage. The results confirm that in Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C the relatively dispersed quasi-spherical Bi/a-Bi<sub>2</sub>O<sub>3</sub> hybrid nanoparticles are tightly embedded within the N-doped carbon with a wrinkled surface; meanwhile, the Bi–C and Bi–<em>O</em>–C bonds are formed between Bi/a-Bi<sub>2</sub>O<sub>3</sub> and carbon, further reinforcing the combination between Bi/a-Bi<sub>2</sub>O<sub>3</sub> and carbon and enhancing the conductivity of Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C. Moreover, the amorphous a-Bi<sub>2</sub>O<sub>3</sub> with an open architecture can offer more isotropic ion transfer ways to facilitate the transport of Li<sup>+</sup>. These distinctive structural features endow Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C with fast electrochemical reaction kinetics, high capacitance ratio, superior structural stability and a LiF-rich SEI layer during cycle. As a result, the Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C reveals outstanding electrochemical performance including high capacity, good rate performance and long lifespan, with 406.7 and 154.2 mAh g<sup>−1</sup> after 460 and 1000 cycles at 200 and 2000 mA g<sup>−1</sup> (about 13 C), respectively. This work provides a new insight into the improvement of lithium storage performances of the Bi-based anodes.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022369724004657/pdfft?md5=301383bf9f857c51d453f3e69d3f4dea&pid=1-s2.0-S0022369724004657-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel crystalline Bi/amorphous Bi2O3 hybrid nanoparticles embedded in N-doped carbon for high-performance lithium-ion battery anodes\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, novel crystalline Bi/amorphous Bi<sub>2</sub>O<sub>3</sub> hybrid nanoparticles (Bi/a-Bi<sub>2</sub>O<sub>3</sub>) are embedded into an N-doped carbon (Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C) by a simple ball-milling and subsequent carbonization process to stabilize the structure and enhance the conductivity of the Bi/a-Bi<sub>2</sub>O<sub>3</sub> anode during lithium storage. The results confirm that in Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C the relatively dispersed quasi-spherical Bi/a-Bi<sub>2</sub>O<sub>3</sub> hybrid nanoparticles are tightly embedded within the N-doped carbon with a wrinkled surface; meanwhile, the Bi–C and Bi–<em>O</em>–C bonds are formed between Bi/a-Bi<sub>2</sub>O<sub>3</sub> and carbon, further reinforcing the combination between Bi/a-Bi<sub>2</sub>O<sub>3</sub> and carbon and enhancing the conductivity of Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C. Moreover, the amorphous a-Bi<sub>2</sub>O<sub>3</sub> with an open architecture can offer more isotropic ion transfer ways to facilitate the transport of Li<sup>+</sup>. These distinctive structural features endow Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C with fast electrochemical reaction kinetics, high capacitance ratio, superior structural stability and a LiF-rich SEI layer during cycle. As a result, the Bi/a-Bi<sub>2</sub>O<sub>3</sub>@C reveals outstanding electrochemical performance including high capacity, good rate performance and long lifespan, with 406.7 and 154.2 mAh g<sup>−1</sup> after 460 and 1000 cycles at 200 and 2000 mA g<sup>−1</sup> (about 13 C), respectively. This work provides a new insight into the improvement of lithium storage performances of the Bi-based anodes.</p></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022369724004657/pdfft?md5=301383bf9f857c51d453f3e69d3f4dea&pid=1-s2.0-S0022369724004657-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724004657\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004657","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,通过简单的球磨和随后的碳化过程,将新型晶体Bi/非晶态Bi2O3混合纳米粒子(Bi/a-Bi2O3)嵌入掺杂N的碳(Bi/a-Bi2O3@C)中,以稳定Bi/a-Bi2O3负极的结构并增强其在锂储存过程中的导电性。结果证实,在Bi/a-Bi2O3@C中,相对分散的准球形Bi/a-Bi2O3杂化纳米粒子紧密嵌入掺杂N的碳中,表面呈现皱褶;同时,Bi/a-Bi2O3与碳之间形成了Bi-C和Bi-O-C键,进一步加强了Bi/a-Bi2O3与碳的结合,提高了Bi/a-Bi2O3@C的导电性。此外,具有开放结构的无定形 a-Bi2O3 可以提供更多各向同性的离子传输途径,从而促进 Li+ 的传输。这些独特的结构特征赋予了 Bi/a-Bi2O3@C 快速的电化学反应动力学、高电容比、优异的结构稳定性以及在循环过程中富含 LiF 的 SEI 层。因此,Bi/a-Bi2O3@C 显示出卓越的电化学性能,包括高容量、良好的速率性能和长寿命,在 200 mA g-1 和 2000 mA g-1 (约 13 C)条件下循环 460 次和 1000 次后,容量分别为 406.7 mAh g-1 和 154.2 mAh g-1。这项研究为改善铋基阳极的锂存储性能提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel crystalline Bi/amorphous Bi2O3 hybrid nanoparticles embedded in N-doped carbon for high-performance lithium-ion battery anodes

In this work, novel crystalline Bi/amorphous Bi2O3 hybrid nanoparticles (Bi/a-Bi2O3) are embedded into an N-doped carbon (Bi/a-Bi2O3@C) by a simple ball-milling and subsequent carbonization process to stabilize the structure and enhance the conductivity of the Bi/a-Bi2O3 anode during lithium storage. The results confirm that in Bi/a-Bi2O3@C the relatively dispersed quasi-spherical Bi/a-Bi2O3 hybrid nanoparticles are tightly embedded within the N-doped carbon with a wrinkled surface; meanwhile, the Bi–C and Bi–O–C bonds are formed between Bi/a-Bi2O3 and carbon, further reinforcing the combination between Bi/a-Bi2O3 and carbon and enhancing the conductivity of Bi/a-Bi2O3@C. Moreover, the amorphous a-Bi2O3 with an open architecture can offer more isotropic ion transfer ways to facilitate the transport of Li+. These distinctive structural features endow Bi/a-Bi2O3@C with fast electrochemical reaction kinetics, high capacitance ratio, superior structural stability and a LiF-rich SEI layer during cycle. As a result, the Bi/a-Bi2O3@C reveals outstanding electrochemical performance including high capacity, good rate performance and long lifespan, with 406.7 and 154.2 mAh g−1 after 460 and 1000 cycles at 200 and 2000 mA g−1 (about 13 C), respectively. This work provides a new insight into the improvement of lithium storage performances of the Bi-based anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery Facile synthesis of carbon particles composed of N-doped carbon nanotube and their application in lithium-ion batteries Sonochemical synthesis of mesoporous ZnyCd1-yS quantum dots: Composition-dependent optical, electrical, dielectric, and hydrogen-generation characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1