考虑代表性应力随时间变化的特点,对高温下结构部件的蠕变可靠性进行评估

IF 4.7 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2024-09-03 DOI:10.1016/j.engfracmech.2024.110458
{"title":"考虑代表性应力随时间变化的特点,对高温下结构部件的蠕变可靠性进行评估","authors":"","doi":"10.1016/j.engfracmech.2024.110458","DOIUrl":null,"url":null,"abstract":"<div><p>Creep reliability assessment of structural components at elevated temperatures is essential to guarantee the long-term safe operation of the system. Current studies are limited to continuum damage mechanics methods at the material level, while the reliability assessment method for creep design at the component level is rarely reported. In this work, the framework for creep reliability assessment of structural components is extended, where the time dependent feature of the representative stress is included. The effect of the time dependent feature of the representative stress on creep reliability assessment is discussed. Sensitivity analyses of material parameters on creep reliability assessment results are conducted based on the Sobol and Morris global methods. Results indicate that for the same creep design life, the component presents a higher failure probability when the time dependent feature of the representative stress is considered. Parameters <em>D</em> and <em>d</em> in the creep rupture life equation have more significant effects on creep rupture life than other parameters for the case studied.</p></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creep reliability assessment of structural components at elevated temperatures considering the time dependent feature of representative stress\",\"authors\":\"\",\"doi\":\"10.1016/j.engfracmech.2024.110458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Creep reliability assessment of structural components at elevated temperatures is essential to guarantee the long-term safe operation of the system. Current studies are limited to continuum damage mechanics methods at the material level, while the reliability assessment method for creep design at the component level is rarely reported. In this work, the framework for creep reliability assessment of structural components is extended, where the time dependent feature of the representative stress is included. The effect of the time dependent feature of the representative stress on creep reliability assessment is discussed. Sensitivity analyses of material parameters on creep reliability assessment results are conducted based on the Sobol and Morris global methods. Results indicate that for the same creep design life, the component presents a higher failure probability when the time dependent feature of the representative stress is considered. Parameters <em>D</em> and <em>d</em> in the creep rupture life equation have more significant effects on creep rupture life than other parameters for the case studied.</p></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424006210\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006210","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

对高温下的结构部件进行蠕变可靠性评估对于保证系统的长期安全运行至关重要。目前的研究仅限于材料层面的连续损伤力学方法,而部件层面的蠕变设计可靠性评估方法却鲜有报道。在这项工作中,对结构部件蠕变可靠性评估框架进行了扩展,其中包括代表应力的时间依赖性特征。讨论了代表应力随时间变化的特点对蠕变可靠性评估的影响。根据 Sobol 和 Morris 全局方法,对材料参数对蠕变可靠性评估结果的敏感性进行了分析。结果表明,在蠕变设计寿命相同的情况下,如果考虑到代表应力的时间依赖性特征,部件的失效概率会更高。在所研究的案例中,蠕变断裂寿命方程中的参数 D 和 d 比其他参数对蠕变断裂寿命的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Creep reliability assessment of structural components at elevated temperatures considering the time dependent feature of representative stress

Creep reliability assessment of structural components at elevated temperatures is essential to guarantee the long-term safe operation of the system. Current studies are limited to continuum damage mechanics methods at the material level, while the reliability assessment method for creep design at the component level is rarely reported. In this work, the framework for creep reliability assessment of structural components is extended, where the time dependent feature of the representative stress is included. The effect of the time dependent feature of the representative stress on creep reliability assessment is discussed. Sensitivity analyses of material parameters on creep reliability assessment results are conducted based on the Sobol and Morris global methods. Results indicate that for the same creep design life, the component presents a higher failure probability when the time dependent feature of the representative stress is considered. Parameters D and d in the creep rupture life equation have more significant effects on creep rupture life than other parameters for the case studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
Editorial Board A novel experimental method for studying rock collision Crystal plasticity-driven evaluation of notch fatigue behavior in IN718 Research on the microstructure, mechanical and fatigue performance of 7075/6061 dissimilar aluminum alloy fusion welding joint treated by nanoparticle and post-weld heat treatment Strain-gradient and damage failure behavior in particle reinforced heterogeneous matrix composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1