{"title":"用纳米二氧化硅颗粒增强牙科复合材料的机械和粘弹性能 用纳米二氧化硅颗粒增强牙科复合材料的机械和粘弹性能","authors":"R. Verma, M.S. Azam, S.R. Kumar","doi":"10.1002/mawe.202300420","DOIUrl":null,"url":null,"abstract":"<p>In the current study, dental nanocomposite reinforced with silanized silicon dioxide nanoparticles was developed. The silicon dioxide nanoparticles were varied from 0 to 30 weight-%. Polymer resin of bisphenol A-glycidyl methacrylate/ triethylene glycol dimethacrylate (BisGMA/TEGDMA) was used along with camphorquinone and ethyl 4-(dimethylamino) benzoate as polymerization initiator and accelerator respectively. The role of silicon dioxide nanoparticles in mechanical and viscoelastic properties of dental composites was evaluated. Physical properties like void content and water sorption were increased by 10 % and 25 % respectively. However, mechanical and viscoelastic properties were improved with the addition of silicon dioxide nanoparticles. Data were analyzed statistically with one-way analysis of variance (ANOVA) and post hoc Tukey′s HSD test (α<0.05). The incorporation of 10 weight-% of silicon dioxide nanoparticles increased the micro-hardness by 126.1 %, compressive strength by 7.6 % and flexural strength by 28.8 %. The storage modulus was increased by 37 % and loss modulus was decreased by 1 % with the introduction of 10 weight-% of silicon dioxide nanoparticles.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 9","pages":"1268-1275"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and viscoelastic properties of dental composites reinforced with silicon dioxide nanoparticles\\n Mechanische und viskoelastische Eigenschaften von mit Siliziumdioxid-Nanopartikeln verstärkten Dentalverbundwerkstoffen\",\"authors\":\"R. Verma, M.S. Azam, S.R. Kumar\",\"doi\":\"10.1002/mawe.202300420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the current study, dental nanocomposite reinforced with silanized silicon dioxide nanoparticles was developed. The silicon dioxide nanoparticles were varied from 0 to 30 weight-%. Polymer resin of bisphenol A-glycidyl methacrylate/ triethylene glycol dimethacrylate (BisGMA/TEGDMA) was used along with camphorquinone and ethyl 4-(dimethylamino) benzoate as polymerization initiator and accelerator respectively. The role of silicon dioxide nanoparticles in mechanical and viscoelastic properties of dental composites was evaluated. Physical properties like void content and water sorption were increased by 10 % and 25 % respectively. However, mechanical and viscoelastic properties were improved with the addition of silicon dioxide nanoparticles. Data were analyzed statistically with one-way analysis of variance (ANOVA) and post hoc Tukey′s HSD test (α<0.05). The incorporation of 10 weight-% of silicon dioxide nanoparticles increased the micro-hardness by 126.1 %, compressive strength by 7.6 % and flexural strength by 28.8 %. The storage modulus was increased by 37 % and loss modulus was decreased by 1 % with the introduction of 10 weight-% of silicon dioxide nanoparticles.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"55 9\",\"pages\":\"1268-1275\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300420\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300420","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical and viscoelastic properties of dental composites reinforced with silicon dioxide nanoparticles
Mechanische und viskoelastische Eigenschaften von mit Siliziumdioxid-Nanopartikeln verstärkten Dentalverbundwerkstoffen
In the current study, dental nanocomposite reinforced with silanized silicon dioxide nanoparticles was developed. The silicon dioxide nanoparticles were varied from 0 to 30 weight-%. Polymer resin of bisphenol A-glycidyl methacrylate/ triethylene glycol dimethacrylate (BisGMA/TEGDMA) was used along with camphorquinone and ethyl 4-(dimethylamino) benzoate as polymerization initiator and accelerator respectively. The role of silicon dioxide nanoparticles in mechanical and viscoelastic properties of dental composites was evaluated. Physical properties like void content and water sorption were increased by 10 % and 25 % respectively. However, mechanical and viscoelastic properties were improved with the addition of silicon dioxide nanoparticles. Data were analyzed statistically with one-way analysis of variance (ANOVA) and post hoc Tukey′s HSD test (α<0.05). The incorporation of 10 weight-% of silicon dioxide nanoparticles increased the micro-hardness by 126.1 %, compressive strength by 7.6 % and flexural strength by 28.8 %. The storage modulus was increased by 37 % and loss modulus was decreased by 1 % with the introduction of 10 weight-% of silicon dioxide nanoparticles.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.