Z. Wu, Z. Zhang, X. Zhang, H. Jiang, Z. Zhang, Y. Zhang, C. Yang
{"title":"环氧树脂/泡沫铝/橡胶粉三相复合材料的力学性能和失效机理研究 环氧树脂/泡沫铝/橡胶粉三相复合材料的力学性能和失效机理研究","authors":"Z. Wu, Z. Zhang, X. Zhang, H. Jiang, Z. Zhang, Y. Zhang, C. Yang","doi":"10.1002/mawe.202300363","DOIUrl":null,"url":null,"abstract":"<p>In this paper, three-phase composites were made by combining N220 carbon black rubber powder with open-cell aluminum foam and epoxy resin with mass fractions of 3 %, 5 %, and 7 %, respectively. The mechanical and energy absorption properties of three groups of epoxy resin/rubber powder/aluminum foam three-phase composites with added aluminum foam and different mass fractions of N220 carbon black rubber powder were analyzed during quasi-static compression at a compression rate of 2 mm/minute. The mechanical parameters in the quasi-static compression experiments were compared with those of the two-phase composites of epoxy resin/rubber powder with no added aluminum foam. Finally, the micro-morphology of the composites after quasi-static compression damage was observed by scanning electron microscopy. The results show that the collapse deformation of aluminum foam during compression affects the stability of the epoxy resin/rubber powder composite matrix and reduces the toughness of the epoxy resin/rubber powder composite matrix.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 9","pages":"1238-1249"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on mechanical properties and failure mechanism of epoxy resin/aluminum foam/rubber powder three-phase composites\\n Untersuchung der mechanischen Eigenschaften und des Versagensmechanismus von Dreiphasen-Verbundwerkstoffen aus Epoxidharz/Aluminiumschaum/Gummipulver\",\"authors\":\"Z. Wu, Z. Zhang, X. Zhang, H. Jiang, Z. Zhang, Y. Zhang, C. Yang\",\"doi\":\"10.1002/mawe.202300363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, three-phase composites were made by combining N220 carbon black rubber powder with open-cell aluminum foam and epoxy resin with mass fractions of 3 %, 5 %, and 7 %, respectively. The mechanical and energy absorption properties of three groups of epoxy resin/rubber powder/aluminum foam three-phase composites with added aluminum foam and different mass fractions of N220 carbon black rubber powder were analyzed during quasi-static compression at a compression rate of 2 mm/minute. The mechanical parameters in the quasi-static compression experiments were compared with those of the two-phase composites of epoxy resin/rubber powder with no added aluminum foam. Finally, the micro-morphology of the composites after quasi-static compression damage was observed by scanning electron microscopy. The results show that the collapse deformation of aluminum foam during compression affects the stability of the epoxy resin/rubber powder composite matrix and reduces the toughness of the epoxy resin/rubber powder composite matrix.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"55 9\",\"pages\":\"1238-1249\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300363\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300363","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on mechanical properties and failure mechanism of epoxy resin/aluminum foam/rubber powder three-phase composites
Untersuchung der mechanischen Eigenschaften und des Versagensmechanismus von Dreiphasen-Verbundwerkstoffen aus Epoxidharz/Aluminiumschaum/Gummipulver
In this paper, three-phase composites were made by combining N220 carbon black rubber powder with open-cell aluminum foam and epoxy resin with mass fractions of 3 %, 5 %, and 7 %, respectively. The mechanical and energy absorption properties of three groups of epoxy resin/rubber powder/aluminum foam three-phase composites with added aluminum foam and different mass fractions of N220 carbon black rubber powder were analyzed during quasi-static compression at a compression rate of 2 mm/minute. The mechanical parameters in the quasi-static compression experiments were compared with those of the two-phase composites of epoxy resin/rubber powder with no added aluminum foam. Finally, the micro-morphology of the composites after quasi-static compression damage was observed by scanning electron microscopy. The results show that the collapse deformation of aluminum foam during compression affects the stability of the epoxy resin/rubber powder composite matrix and reduces the toughness of the epoxy resin/rubber powder composite matrix.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.