用于海面温度预测的基于物理引导的注意力神经网络

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2024-09-10 DOI:10.1109/TGRS.2024.3457039
Benyun Shi;Liu Feng;Hailun He;Yingjian Hao;Yue Peng;Miao Liu;Yang Liu;Jiming Liu
{"title":"用于海面温度预测的基于物理引导的注意力神经网络","authors":"Benyun Shi;Liu Feng;Hailun He;Yingjian Hao;Yue Peng;Miao Liu;Yang Liu;Jiming Liu","doi":"10.1109/TGRS.2024.3457039","DOIUrl":null,"url":null,"abstract":"Accurate prediction of sea surface temperature (SST) is crucial in the field of oceanography, as it has a significant impact on various physical, chemical, and biological processes in the marine environment. In this study, we propose a physics-guided attention-based neural network (PANN) to address the spatiotemporal SST prediction problem. The PANN model incorporates data-driven spatiotemporal convolution operations and the underlying physical dynamics of SSTs using a cross-attention mechanism. First, we construct a spatiotemporal convolution module (SCM) using convolutional long short-term memory (ConvLSTM) to capture the spatial and temporal correlations present in the time series of the SST data. We then introduce a physical constraint module (PCM) to mimic the transport dynamics in fluids based on data assimilation techniques used to solve partial differential equations (PDEs). Consequently, we employ an attention fusion module (AFM) to effectively combine the data-driven and PDE-constrained predictions obtained from the SCM and PCM, aiming at enhancing the accuracy of the predictions. To evaluate the performance of the proposed model, we conduct short-term SST forecasts in the East China Sea (ECS) with forecast lead times ranging from one to ten days, by comparing it with several state-of-the-art models, including ConvLSTM, PredRNN, temporal convolutional transformer network (TCTN), convolutional gated recurrent unit (ConvGRU), and SwinLSTM. The experimental results demonstrate that our proposed model outperforms these models in terms of multiple evaluation metrics for short-term predictions.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physics-Guided Attention-Based Neural Network for Sea Surface Temperature Prediction\",\"authors\":\"Benyun Shi;Liu Feng;Hailun He;Yingjian Hao;Yue Peng;Miao Liu;Yang Liu;Jiming Liu\",\"doi\":\"10.1109/TGRS.2024.3457039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of sea surface temperature (SST) is crucial in the field of oceanography, as it has a significant impact on various physical, chemical, and biological processes in the marine environment. In this study, we propose a physics-guided attention-based neural network (PANN) to address the spatiotemporal SST prediction problem. The PANN model incorporates data-driven spatiotemporal convolution operations and the underlying physical dynamics of SSTs using a cross-attention mechanism. First, we construct a spatiotemporal convolution module (SCM) using convolutional long short-term memory (ConvLSTM) to capture the spatial and temporal correlations present in the time series of the SST data. We then introduce a physical constraint module (PCM) to mimic the transport dynamics in fluids based on data assimilation techniques used to solve partial differential equations (PDEs). Consequently, we employ an attention fusion module (AFM) to effectively combine the data-driven and PDE-constrained predictions obtained from the SCM and PCM, aiming at enhancing the accuracy of the predictions. To evaluate the performance of the proposed model, we conduct short-term SST forecasts in the East China Sea (ECS) with forecast lead times ranging from one to ten days, by comparing it with several state-of-the-art models, including ConvLSTM, PredRNN, temporal convolutional transformer network (TCTN), convolutional gated recurrent unit (ConvGRU), and SwinLSTM. The experimental results demonstrate that our proposed model outperforms these models in terms of multiple evaluation metrics for short-term predictions.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10672528/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10672528/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

准确预测海面温度(SST)在海洋学领域至关重要,因为它对海洋环境中的各种物理、化学和生物过程有重大影响。在本研究中,我们提出了一种基于物理引导的注意力神经网络(PANN)来解决时空 SST 预测问题。PANN 模型采用交叉注意机制,将数据驱动的时空卷积运算和 SST 的基本物理动态结合在一起。首先,我们利用卷积长短时记忆(ConvLSTM)构建了一个时空卷积模块(SCM),以捕捉 SST 数据时间序列中存在的时空相关性。然后,我们引入一个物理约束模块(PCM),根据用于求解偏微分方程(PDE)的数据同化技术来模拟流体中的传输动力学。因此,我们采用了注意力融合模块(AFM),将 SCM 和 PCM 获得的数据驱动预测和偏微分方程约束预测有效结合起来,以提高预测的准确性。为了评估所提出模型的性能,我们将其与 ConvLSTM、PredRNN、时序卷积变换网络 (TCTN)、卷积门控递归单元 (ConvGRU) 和 SwinLSTM 等几种最先进的模型进行了比较,在预测前置时间为一到十天的情况下,对中国东海 (ECS) 进行了短期 SST 预测。实验结果表明,就短期预测的多个评估指标而言,我们提出的模型优于这些模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Physics-Guided Attention-Based Neural Network for Sea Surface Temperature Prediction
Accurate prediction of sea surface temperature (SST) is crucial in the field of oceanography, as it has a significant impact on various physical, chemical, and biological processes in the marine environment. In this study, we propose a physics-guided attention-based neural network (PANN) to address the spatiotemporal SST prediction problem. The PANN model incorporates data-driven spatiotemporal convolution operations and the underlying physical dynamics of SSTs using a cross-attention mechanism. First, we construct a spatiotemporal convolution module (SCM) using convolutional long short-term memory (ConvLSTM) to capture the spatial and temporal correlations present in the time series of the SST data. We then introduce a physical constraint module (PCM) to mimic the transport dynamics in fluids based on data assimilation techniques used to solve partial differential equations (PDEs). Consequently, we employ an attention fusion module (AFM) to effectively combine the data-driven and PDE-constrained predictions obtained from the SCM and PCM, aiming at enhancing the accuracy of the predictions. To evaluate the performance of the proposed model, we conduct short-term SST forecasts in the East China Sea (ECS) with forecast lead times ranging from one to ten days, by comparing it with several state-of-the-art models, including ConvLSTM, PredRNN, temporal convolutional transformer network (TCTN), convolutional gated recurrent unit (ConvGRU), and SwinLSTM. The experimental results demonstrate that our proposed model outperforms these models in terms of multiple evaluation metrics for short-term predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Remote sensing images destriping via nonconvex regularization and fast regional decomposition An Enhanced Global Feature-Guided Network Based on Multiple Filtering Noise Reduction for Remote Sensing Image Compression SHBGAN: Hybrid Bilateral Attention GAN for Seismic Image Super-Resolution Reconstruction FDBANet: A Fusion Frequency Domain Denoising and Multi-Scale Boundary Attention Network for Sonar Image Semantic Segmentation Remote-Sensing Image Scene Classification via Graph Template Enhancement and Supplementation Network with Dual-Teacher Knowledge Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1