{"title":"硼中子俘获疗法的模型溶液系统研究","authors":"","doi":"10.1016/j.apradiso.2024.111505","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to establish phantom-solution systems suitable for estimating doses in boron neutron capture therapy (BNCT). The phantom containing three typical solutions, H<sub>3</sub>BO<sub>3</sub>, LiOH, and Gd(NO₃)₃·6H₂O with different concentrations and nuclide abundances have been studied since the nuclides <sup>10</sup>B, <sup>6</sup>Li, and <sup>157</sup>Gd are capable of absorbing thermal neutrons. The results indicate that all three phantom-solution systems, with suitable concentrations and nuclide abundances, effectively distinguish between the nitrogen dose and the hydrogen dose for dose measurement in BNCT.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies of phantom-solution systems for boron neutron capture therapy\",\"authors\":\"\",\"doi\":\"10.1016/j.apradiso.2024.111505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to establish phantom-solution systems suitable for estimating doses in boron neutron capture therapy (BNCT). The phantom containing three typical solutions, H<sub>3</sub>BO<sub>3</sub>, LiOH, and Gd(NO₃)₃·6H₂O with different concentrations and nuclide abundances have been studied since the nuclides <sup>10</sup>B, <sup>6</sup>Li, and <sup>157</sup>Gd are capable of absorbing thermal neutrons. The results indicate that all three phantom-solution systems, with suitable concentrations and nuclide abundances, effectively distinguish between the nitrogen dose and the hydrogen dose for dose measurement in BNCT.</p></div>\",\"PeriodicalId\":8096,\"journal\":{\"name\":\"Applied Radiation and Isotopes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Radiation and Isotopes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969804324003336\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804324003336","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Studies of phantom-solution systems for boron neutron capture therapy
This study aims to establish phantom-solution systems suitable for estimating doses in boron neutron capture therapy (BNCT). The phantom containing three typical solutions, H3BO3, LiOH, and Gd(NO₃)₃·6H₂O with different concentrations and nuclide abundances have been studied since the nuclides 10B, 6Li, and 157Gd are capable of absorbing thermal neutrons. The results indicate that all three phantom-solution systems, with suitable concentrations and nuclide abundances, effectively distinguish between the nitrogen dose and the hydrogen dose for dose measurement in BNCT.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.