Zhihang Zhang , Yalan Luo , Xijing Zhuang , Haifeng Gao , Qi Yang , Hailong Chen
{"title":"大黄素通过 miR-217-5p/Sirt1 轴减轻重症急性胰腺炎大鼠的肺损伤","authors":"Zhihang Zhang , Yalan Luo , Xijing Zhuang , Haifeng Gao , Qi Yang , Hailong Chen","doi":"10.1016/j.jphs.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Acute lung injury (ALI) is closely related to high mortality in severe acute pancreatitis (SAP). This study unveils the therapeutic effect and mechanism of miR-217-5p on SAP-associated ALI. The miR-217-5p RNA expression was significantly up-regulated in lipopolysaccharide (LPS)-stimulated primary rat alveolar epithelial type II cells (AEC II) and sodium taurocholate-treated pancreas and lung in SAP rats. miR-217 inhibition protected AEC II from LPS-induced damage by inhibiting apoptosis and reducing the TNF-α, IL-6, and ROS levels. miR-217 inhibition suppressed apoptosis and alleviated mitochondrial damage through mitochondria-mediated apoptotic pathway <em>in vitro</em>. Sirt1 is a direct target of miR-217-5p. Dual-luciferase reporter assay confirmed the binding of miR-217-5p to Sirt1 mRNA 3′-UTR. The rescue experiment identified that the anti-apoptotic, anti-inflammatory, and anti-oxidative effects of miR-217 inhibition were mediated by Sirt1 <em>in vitro</em>. Emodin (EMO) protected AEC II from LPS-induced damage and alleviated pancreatic and lung tissue injuries. EMO exerted similar effects as miR-217 inhibition <em>in vitro</em> and <em>in vivo</em>. The effects of EMO were abolished by miR-217 overexpression. In conclusion, miR-217-5p inhibition exerts protective effects on SAP-ALI <em>in vitro</em> and <em>in vivo</em> by repressing apoptosis, inflammation, and oxidative stress through Sirt1 activation. EMO protects against lung injuries in SAP-associated ALI rats through miR-217-5p/Sirt1 axis.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 3","pages":"Pages 188-197"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S134786132400063X/pdfft?md5=3d53035ef4c6f969c6fe0d4f04792bd1&pid=1-s2.0-S134786132400063X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Emodin alleviates lung injury via the miR-217-5p/Sirt1 axis in rats with severe acute pancreatitis\",\"authors\":\"Zhihang Zhang , Yalan Luo , Xijing Zhuang , Haifeng Gao , Qi Yang , Hailong Chen\",\"doi\":\"10.1016/j.jphs.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acute lung injury (ALI) is closely related to high mortality in severe acute pancreatitis (SAP). This study unveils the therapeutic effect and mechanism of miR-217-5p on SAP-associated ALI. The miR-217-5p RNA expression was significantly up-regulated in lipopolysaccharide (LPS)-stimulated primary rat alveolar epithelial type II cells (AEC II) and sodium taurocholate-treated pancreas and lung in SAP rats. miR-217 inhibition protected AEC II from LPS-induced damage by inhibiting apoptosis and reducing the TNF-α, IL-6, and ROS levels. miR-217 inhibition suppressed apoptosis and alleviated mitochondrial damage through mitochondria-mediated apoptotic pathway <em>in vitro</em>. Sirt1 is a direct target of miR-217-5p. Dual-luciferase reporter assay confirmed the binding of miR-217-5p to Sirt1 mRNA 3′-UTR. The rescue experiment identified that the anti-apoptotic, anti-inflammatory, and anti-oxidative effects of miR-217 inhibition were mediated by Sirt1 <em>in vitro</em>. Emodin (EMO) protected AEC II from LPS-induced damage and alleviated pancreatic and lung tissue injuries. EMO exerted similar effects as miR-217 inhibition <em>in vitro</em> and <em>in vivo</em>. The effects of EMO were abolished by miR-217 overexpression. In conclusion, miR-217-5p inhibition exerts protective effects on SAP-ALI <em>in vitro</em> and <em>in vivo</em> by repressing apoptosis, inflammation, and oxidative stress through Sirt1 activation. EMO protects against lung injuries in SAP-associated ALI rats through miR-217-5p/Sirt1 axis.</p></div>\",\"PeriodicalId\":16786,\"journal\":{\"name\":\"Journal of pharmacological sciences\",\"volume\":\"156 3\",\"pages\":\"Pages 188-197\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S134786132400063X/pdfft?md5=3d53035ef4c6f969c6fe0d4f04792bd1&pid=1-s2.0-S134786132400063X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S134786132400063X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S134786132400063X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
急性肺损伤(ALI)与重症急性胰腺炎(SAP)的高死亡率密切相关。本研究揭示了 miR-217-5p 对 SAP 相关 ALI 的治疗作用和机制。在脂多糖(LPS)刺激的原代大鼠肺泡上皮 II 型细胞(AEC II)和牛磺胆酸钠处理的 SAP 大鼠胰腺和肺中,miR-217-5p RNA 表达明显上调。抑制 miR-217 可抑制细胞凋亡,降低 TNF-α、IL-6 和 ROS 水平,从而保护 AEC II 免受 LPS 诱导的损伤。Sirt1 是 miR-217-5p 的直接靶标。双荧光素酶报告实验证实了 miR-217-5p 与 Sirt1 mRNA 3′-UTR 的结合。拯救实验表明,体外抑制 miR-217 的抗凋亡、抗炎和抗氧化作用是由 Sirt1 介导的。大黄素(EMO)能保护 AEC II 免受 LPS 诱导的损伤,并减轻胰腺和肺组织损伤。在体外和体内,EMO 发挥了与抑制 miR-217 相似的作用。过表达 miR-217 会取消 EMO 的作用。总之,miR-217-5p抑制通过激活Sirt1抑制细胞凋亡、炎症和氧化应激,从而在体外和体内对SAP-ALI产生保护作用。EMO通过miR-217-5p/Sirt1轴保护SAP相关ALI大鼠免受肺损伤。
Emodin alleviates lung injury via the miR-217-5p/Sirt1 axis in rats with severe acute pancreatitis
Acute lung injury (ALI) is closely related to high mortality in severe acute pancreatitis (SAP). This study unveils the therapeutic effect and mechanism of miR-217-5p on SAP-associated ALI. The miR-217-5p RNA expression was significantly up-regulated in lipopolysaccharide (LPS)-stimulated primary rat alveolar epithelial type II cells (AEC II) and sodium taurocholate-treated pancreas and lung in SAP rats. miR-217 inhibition protected AEC II from LPS-induced damage by inhibiting apoptosis and reducing the TNF-α, IL-6, and ROS levels. miR-217 inhibition suppressed apoptosis and alleviated mitochondrial damage through mitochondria-mediated apoptotic pathway in vitro. Sirt1 is a direct target of miR-217-5p. Dual-luciferase reporter assay confirmed the binding of miR-217-5p to Sirt1 mRNA 3′-UTR. The rescue experiment identified that the anti-apoptotic, anti-inflammatory, and anti-oxidative effects of miR-217 inhibition were mediated by Sirt1 in vitro. Emodin (EMO) protected AEC II from LPS-induced damage and alleviated pancreatic and lung tissue injuries. EMO exerted similar effects as miR-217 inhibition in vitro and in vivo. The effects of EMO were abolished by miR-217 overexpression. In conclusion, miR-217-5p inhibition exerts protective effects on SAP-ALI in vitro and in vivo by repressing apoptosis, inflammation, and oxidative stress through Sirt1 activation. EMO protects against lung injuries in SAP-associated ALI rats through miR-217-5p/Sirt1 axis.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.