{"title":"通过亮度掩模引导的多注意力嵌入增强水下图像","authors":"Yuanyuan Li, Zetian Mi, Peng Lin, Xianping Fu","doi":"10.1016/j.image.2024.117200","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous new underwater image enhancement methods have been proposed to correct color and enhance the contrast. Although these methods have achieved satisfactory enhancement results in some respects, few have taken into account the effect of the raw image illumination distribution on the enhancement results, often leading to oversaturation or undersaturation. To solve these problems, an underwater image enhancement network guided by brightness mask with multi-attention embedding, called BMGMANet, is designed. Specifically, considering that different regions in the underwater images have different degradation degrees, which can be implicitly reflected by a brightness mask characterizing the image illumination distribution, a decoder network guided by a reverse brightness mask is designed to enhance the dark regions while suppressing excessive enhancement of the bright regions. In addition, a triple-attention module is designed to further enhance the contrast of the underwater image and recover more details. Extensive comparative experiments demonstrate that the enhancement results of our network outperform those of existing state-of-the-art methods. Furthermore, additional experiments also prove that our BMGMANet can effectively enhance the non-uniform illumination underwater images and improve the performance of saliency object detection in underwater images.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"130 ","pages":"Article 117200"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underwater image enhancement via brightness mask-guided multi-attention embedding\",\"authors\":\"Yuanyuan Li, Zetian Mi, Peng Lin, Xianping Fu\",\"doi\":\"10.1016/j.image.2024.117200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerous new underwater image enhancement methods have been proposed to correct color and enhance the contrast. Although these methods have achieved satisfactory enhancement results in some respects, few have taken into account the effect of the raw image illumination distribution on the enhancement results, often leading to oversaturation or undersaturation. To solve these problems, an underwater image enhancement network guided by brightness mask with multi-attention embedding, called BMGMANet, is designed. Specifically, considering that different regions in the underwater images have different degradation degrees, which can be implicitly reflected by a brightness mask characterizing the image illumination distribution, a decoder network guided by a reverse brightness mask is designed to enhance the dark regions while suppressing excessive enhancement of the bright regions. In addition, a triple-attention module is designed to further enhance the contrast of the underwater image and recover more details. Extensive comparative experiments demonstrate that the enhancement results of our network outperform those of existing state-of-the-art methods. Furthermore, additional experiments also prove that our BMGMANet can effectively enhance the non-uniform illumination underwater images and improve the performance of saliency object detection in underwater images.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"130 \",\"pages\":\"Article 117200\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524001012\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001012","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Underwater image enhancement via brightness mask-guided multi-attention embedding
Numerous new underwater image enhancement methods have been proposed to correct color and enhance the contrast. Although these methods have achieved satisfactory enhancement results in some respects, few have taken into account the effect of the raw image illumination distribution on the enhancement results, often leading to oversaturation or undersaturation. To solve these problems, an underwater image enhancement network guided by brightness mask with multi-attention embedding, called BMGMANet, is designed. Specifically, considering that different regions in the underwater images have different degradation degrees, which can be implicitly reflected by a brightness mask characterizing the image illumination distribution, a decoder network guided by a reverse brightness mask is designed to enhance the dark regions while suppressing excessive enhancement of the bright regions. In addition, a triple-attention module is designed to further enhance the contrast of the underwater image and recover more details. Extensive comparative experiments demonstrate that the enhancement results of our network outperform those of existing state-of-the-art methods. Furthermore, additional experiments also prove that our BMGMANet can effectively enhance the non-uniform illumination underwater images and improve the performance of saliency object detection in underwater images.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.