{"title":"指数密度和佩伦-弗罗贝尼斯算子","authors":"Somnath Ghosh , Debkumar Giri","doi":"10.1016/j.aim.2024.109932","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the weak-star density of the linear span of the trigonometric functions<span><span><span><math><mrow><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mo>(</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>n</mi><mi>y</mi><mo>)</mo></mrow></msup><mo>,</mo><mspace></mspace><msubsup><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo><</mo><mi>β</mi><mo>></mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mi>β</mi><mo>(</mo><mi>m</mi><mo>/</mo><mi>x</mi><mo>+</mo><mi>n</mi><mo>/</mo><mi>y</mi><mo>)</mo></mrow></msup><mo>;</mo><mspace></mspace></mrow><mspace></mspace><mrow><mspace></mspace><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span></span></span> for a positive real <em>β</em>. We aim to extend the results of Hedenmalm and Montes-Rodríguez (2011) <span><span>[18]</span></span> and Canto-Martín, Hedenmalm, and Montes-Rodríguez (2014) <span><span>[8]</span></span> in the plane. They have extensively studied the weak-star completeness of the <em>hyperbolic trigonometric system</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This is the dual formulation of the Heisenberg uniqueness pair for (hyperbola, certain lattice-cross).</p><p>As in their work, <span><math><mi>β</mi><mo>=</mo><mn>1</mn></math></span> turns out to be the critical value. In particular, one of our main results asserts that the space spanned by the aforesaid trigonometric functions is weak-star dense in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> of the set <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>∪</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>∖</mo><mo>(</mo><mo>−</mo><mi>β</mi><mo>,</mo><mi>β</mi><mo>]</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, and the corresponding pre-annihilator space has finite dimension whenever <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>. However, for <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>, the pre-annihilator space can be made infinite-dimensional by allowing functions with slightly bigger support than <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub></math></span>. To be precise, let <span><math><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub></math></span> be such that <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>β</mi><mo>,</mo><mi>β</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup></math></span> has positive Lebesgue measure. We prove that the weak-star closure of the linear span of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo><</mo><mi>β</mi><mo>></mo></mrow></msubsup></math></span> as <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span> varies over <span><math><mi>Z</mi></math></span>, has infinite codimension in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub><mo>∪</mo><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>)</mo></mrow></math></span> whenever <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>. Our proof goes via the analysis of a two-dimensional Gauss-type map and its corresponding Perron-Frobenius operator.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density of exponentials and Perron-Frobenius operators\",\"authors\":\"Somnath Ghosh , Debkumar Giri\",\"doi\":\"10.1016/j.aim.2024.109932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we study the weak-star density of the linear span of the trigonometric functions<span><span><span><math><mrow><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mo>(</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>n</mi><mi>y</mi><mo>)</mo></mrow></msup><mo>,</mo><mspace></mspace><msubsup><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo><</mo><mi>β</mi><mo>></mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>π</mi><mi>i</mi><mi>β</mi><mo>(</mo><mi>m</mi><mo>/</mo><mi>x</mi><mo>+</mo><mi>n</mi><mo>/</mo><mi>y</mi><mo>)</mo></mrow></msup><mo>;</mo><mspace></mspace></mrow><mspace></mspace><mrow><mspace></mspace><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></mrow></math></span></span></span> for a positive real <em>β</em>. We aim to extend the results of Hedenmalm and Montes-Rodríguez (2011) <span><span>[18]</span></span> and Canto-Martín, Hedenmalm, and Montes-Rodríguez (2014) <span><span>[8]</span></span> in the plane. They have extensively studied the weak-star completeness of the <em>hyperbolic trigonometric system</em> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This is the dual formulation of the Heisenberg uniqueness pair for (hyperbola, certain lattice-cross).</p><p>As in their work, <span><math><mi>β</mi><mo>=</mo><mn>1</mn></math></span> turns out to be the critical value. In particular, one of our main results asserts that the space spanned by the aforesaid trigonometric functions is weak-star dense in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> of the set <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>∪</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>∖</mo><mo>(</mo><mo>−</mo><mi>β</mi><mo>,</mo><mi>β</mi><mo>]</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> if and only if <span><math><mn>0</mn><mo><</mo><mi>β</mi><mo>≤</mo><mn>1</mn></math></span>, and the corresponding pre-annihilator space has finite dimension whenever <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>. However, for <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>, the pre-annihilator space can be made infinite-dimensional by allowing functions with slightly bigger support than <span><math><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub></math></span>. To be precise, let <span><math><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub></math></span> be such that <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>β</mi><mo>,</mo><mi>β</mi><mo>]</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup></math></span> has positive Lebesgue measure. We prove that the weak-star closure of the linear span of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>e</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo><</mo><mi>β</mi><mo>></mo></mrow></msubsup></math></span> as <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span> varies over <span><math><mi>Z</mi></math></span>, has infinite codimension in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Θ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>β</mi></mrow></msub><mo>∪</mo><msubsup><mrow><mi>Θ</mi></mrow><mrow><mi>β</mi></mrow><mrow><mo>″</mo></mrow></msubsup><mo>)</mo></mrow></math></span> whenever <span><math><mi>β</mi><mo>></mo><mn>1</mn></math></span>. Our proof goes via the analysis of a two-dimensional Gauss-type map and its corresponding Perron-Frobenius operator.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000187082400447X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082400447X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Density of exponentials and Perron-Frobenius operators
In this article, we study the weak-star density of the linear span of the trigonometric functions for a positive real β. We aim to extend the results of Hedenmalm and Montes-Rodríguez (2011) [18] and Canto-Martín, Hedenmalm, and Montes-Rodríguez (2014) [8] in the plane. They have extensively studied the weak-star completeness of the hyperbolic trigonometric system in . This is the dual formulation of the Heisenberg uniqueness pair for (hyperbola, certain lattice-cross).
As in their work, turns out to be the critical value. In particular, one of our main results asserts that the space spanned by the aforesaid trigonometric functions is weak-star dense in of the set if and only if , and the corresponding pre-annihilator space has finite dimension whenever . However, for , the pre-annihilator space can be made infinite-dimensional by allowing functions with slightly bigger support than . To be precise, let be such that has positive Lebesgue measure. We prove that the weak-star closure of the linear span of and as varies over , has infinite codimension in whenever . Our proof goes via the analysis of a two-dimensional Gauss-type map and its corresponding Perron-Frobenius operator.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.