开发 MOF 衍生氧化锌/氧化钴@碳纳米球复合材料,改善甲醇电氧化性能

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-09-04 DOI:10.1016/j.jpcs.2024.112304
{"title":"开发 MOF 衍生氧化锌/氧化钴@碳纳米球复合材料,改善甲醇电氧化性能","authors":"","doi":"10.1016/j.jpcs.2024.112304","DOIUrl":null,"url":null,"abstract":"<div><p>Developing efficient and robust electrocatalysts for methanol electro-oxidation is crucial to advancing direct methanol fuel cells (DMFCs). In this study, we investigated the catalytic properties of ZnO/Co<sub>3</sub>O<sub>4</sub>, derived from a metal-organic framework (MOF), and its combination with carbon nanospheres (CNS) synthesized from glucose for the electrocatalytic oxidation of methanol. The MOF-derived ZnO/Co<sub>3</sub>O<sub>4</sub> was synthesized via the simple co-precipitation method and the CNS was produced using the hydrothermal method. The characterization of ZnO/Co<sub>3</sub>O<sub>4</sub>@CNS nanocomposite was conducted using XRD (X-ray diffraction), HR-TEM (High-resolution Transmission Electron Microscopy), FESEM (Field Emission Scanning Electron Microscopy), and ATR-IR (Attenuated Total Reflectance-Infrared) spectroscopy. These results confirmed that CNS could be incorporated into the MOF composite without disrupting its crystalline structures. By cyclic voltammetry (CV), the electrocatalytic performance was evaluated using a mixture of 1 M methanol and 1 M KOH on a modified glassy carbon electrode (GCE). Due to its more electroactive sites, high electrochemical surface area, and synergistic effect, the ZnO/Co<sub>3</sub>O<sub>4</sub>@CNS nanocomposite exhibited significantly enhanced electrocatalytic performance, delivering a high current density of 118.98 mA mg<sup>−1</sup> at 0.6 V with a scan rate of 50 mV/s. These outcomes highlight the potential of the ZnO/Co<sub>3</sub>O<sub>4</sub>@CNS nanocomposite as a leading catalyst for methanol oxidation in DMFCs.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of MOF-derived zinc oxide/cobalt oxide@carbon nanospheres composite for improved methanol electro-oxidation\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing efficient and robust electrocatalysts for methanol electro-oxidation is crucial to advancing direct methanol fuel cells (DMFCs). In this study, we investigated the catalytic properties of ZnO/Co<sub>3</sub>O<sub>4</sub>, derived from a metal-organic framework (MOF), and its combination with carbon nanospheres (CNS) synthesized from glucose for the electrocatalytic oxidation of methanol. The MOF-derived ZnO/Co<sub>3</sub>O<sub>4</sub> was synthesized via the simple co-precipitation method and the CNS was produced using the hydrothermal method. The characterization of ZnO/Co<sub>3</sub>O<sub>4</sub>@CNS nanocomposite was conducted using XRD (X-ray diffraction), HR-TEM (High-resolution Transmission Electron Microscopy), FESEM (Field Emission Scanning Electron Microscopy), and ATR-IR (Attenuated Total Reflectance-Infrared) spectroscopy. These results confirmed that CNS could be incorporated into the MOF composite without disrupting its crystalline structures. By cyclic voltammetry (CV), the electrocatalytic performance was evaluated using a mixture of 1 M methanol and 1 M KOH on a modified glassy carbon electrode (GCE). Due to its more electroactive sites, high electrochemical surface area, and synergistic effect, the ZnO/Co<sub>3</sub>O<sub>4</sub>@CNS nanocomposite exhibited significantly enhanced electrocatalytic performance, delivering a high current density of 118.98 mA mg<sup>−1</sup> at 0.6 V with a scan rate of 50 mV/s. These outcomes highlight the potential of the ZnO/Co<sub>3</sub>O<sub>4</sub>@CNS nanocomposite as a leading catalyst for methanol oxidation in DMFCs.</p></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724004396\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004396","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效、稳健的甲醇电氧化电催化剂对于推动直接甲醇燃料电池(DMFC)的发展至关重要。在本研究中,我们研究了由金属有机框架(MOF)衍生的 ZnO/Co3O4 及其与由葡萄糖合成的碳纳米球(CNS)结合用于甲醇电催化氧化的催化特性。由 MOF 衍生的 ZnO/Co3O4 是通过简单的共沉淀法合成的,而 CNS 则是通过水热法生产的。利用 XRD(X 射线衍射)、HR-TEM(高分辨率透射电子显微镜)、FESEM(场发射扫描电子显微镜)和 ATR-IR(衰减全反射红外光谱)对 ZnO/Co3O4@ CNS 纳米复合材料进行了表征。这些结果证实了 CNS 可以在不破坏 MOF 复合材料结晶结构的情况下加入其中。通过循环伏安法(CV),在改性玻璃碳电极(GCE)上使用 1 M 甲醇和 1 M KOH 的混合物对其电催化性能进行了评估。由于 ZnO/Co3O4@CNS 纳米复合材料具有较多的电活性位点、较高的电化学表面积和协同效应,因此其电催化性能显著增强,在 0.6 V 电压下,扫描速率为 50 mV/s,电流密度高达 118.98 mA mg-1。这些结果凸显了 ZnO/Co3O4@CNS 纳米复合材料作为 DMFC 中甲醇氧化的主要催化剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of MOF-derived zinc oxide/cobalt oxide@carbon nanospheres composite for improved methanol electro-oxidation

Developing efficient and robust electrocatalysts for methanol electro-oxidation is crucial to advancing direct methanol fuel cells (DMFCs). In this study, we investigated the catalytic properties of ZnO/Co3O4, derived from a metal-organic framework (MOF), and its combination with carbon nanospheres (CNS) synthesized from glucose for the electrocatalytic oxidation of methanol. The MOF-derived ZnO/Co3O4 was synthesized via the simple co-precipitation method and the CNS was produced using the hydrothermal method. The characterization of ZnO/Co3O4@CNS nanocomposite was conducted using XRD (X-ray diffraction), HR-TEM (High-resolution Transmission Electron Microscopy), FESEM (Field Emission Scanning Electron Microscopy), and ATR-IR (Attenuated Total Reflectance-Infrared) spectroscopy. These results confirmed that CNS could be incorporated into the MOF composite without disrupting its crystalline structures. By cyclic voltammetry (CV), the electrocatalytic performance was evaluated using a mixture of 1 M methanol and 1 M KOH on a modified glassy carbon electrode (GCE). Due to its more electroactive sites, high electrochemical surface area, and synergistic effect, the ZnO/Co3O4@CNS nanocomposite exhibited significantly enhanced electrocatalytic performance, delivering a high current density of 118.98 mA mg−1 at 0.6 V with a scan rate of 50 mV/s. These outcomes highlight the potential of the ZnO/Co3O4@CNS nanocomposite as a leading catalyst for methanol oxidation in DMFCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Phononic, photonic and excitonic properties of ∼5 nm diameter aligned CdSe nanowires Effects of ferrous ion doping on the structural, optical, and electronic properties of tin tungstate materials High-performance NiMn2O4@MXene nanocomposites for aqueous zinc-ion battery Facile synthesis of carbon particles composed of N-doped carbon nanotube and their application in lithium-ion batteries Sonochemical synthesis of mesoporous ZnyCd1-yS quantum dots: Composition-dependent optical, electrical, dielectric, and hydrogen-generation characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1