同心强度分布对高合金钢全熔透焊接中飞溅形成的影响

{"title":"同心强度分布对高合金钢全熔透焊接中飞溅形成的影响","authors":"","doi":"10.1016/j.procir.2024.08.150","DOIUrl":null,"url":null,"abstract":"<div><p>Welding of high-alloy steels results in spatter formation addressing high welding speeds above 8 m/min, i.e., the seam quality is significantly reduced due to material losses and adhering spatter. A reduction of spatter can be addressed by using concentric intensity distributions consisting of core and ring, by affecting melt and metal vapor flow. In this paper, the understanding of spatter formation on sheet top and bottom side is significantly enhanced for full penetration welds of AISI 304. Therefore, different concentric intensities and tophat distributions were systematically studied and compared. Fundamental interactions between concentric intensity distributions and spatter formation during full penetration welding were determined and summarized in model concepts. In particular, spatter formation can be reduced on both sheet sides using a concentric intensity distribution due to a smaller keyhole geometry with a smaller angle of inclination of the keyhole front.</p></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212827124005043/pdf?md5=718317e04d2bdfc66f7b8129d500a997&pid=1-s2.0-S2212827124005043-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of concentric intensity distributions on spatter formation in full penetration welding of high-alloy steels\",\"authors\":\"\",\"doi\":\"10.1016/j.procir.2024.08.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Welding of high-alloy steels results in spatter formation addressing high welding speeds above 8 m/min, i.e., the seam quality is significantly reduced due to material losses and adhering spatter. A reduction of spatter can be addressed by using concentric intensity distributions consisting of core and ring, by affecting melt and metal vapor flow. In this paper, the understanding of spatter formation on sheet top and bottom side is significantly enhanced for full penetration welds of AISI 304. Therefore, different concentric intensities and tophat distributions were systematically studied and compared. Fundamental interactions between concentric intensity distributions and spatter formation during full penetration welding were determined and summarized in model concepts. In particular, spatter formation can be reduced on both sheet sides using a concentric intensity distribution due to a smaller keyhole geometry with a smaller angle of inclination of the keyhole front.</p></div>\",\"PeriodicalId\":20535,\"journal\":{\"name\":\"Procedia CIRP\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212827124005043/pdf?md5=718317e04d2bdfc66f7b8129d500a997&pid=1-s2.0-S2212827124005043-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia CIRP\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212827124005043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124005043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在焊接高合金钢时,如果焊接速度超过 8 米/分钟,就会产生飞溅,即由于材料损耗和附着飞溅,焊缝质量会大大降低。通过影响熔体和金属蒸汽的流动,使用由核心和环组成的同心强度分布,可以减少飞溅。在本文中,对 AISI 304 全熔透焊缝而言,板材顶面和底面的飞溅形成情况有了更深入的了解。因此,本文对不同的同心强度和顶部分布进行了系统研究和比较。确定了全熔透焊接过程中同心强度分布与飞溅形成之间的基本相互作用,并用模型概念进行了总结。特别是,由于键孔的几何形状较小,键孔前端的倾斜角度较小,因此使用同心强度分布可减少板材两侧的飞溅形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of concentric intensity distributions on spatter formation in full penetration welding of high-alloy steels

Welding of high-alloy steels results in spatter formation addressing high welding speeds above 8 m/min, i.e., the seam quality is significantly reduced due to material losses and adhering spatter. A reduction of spatter can be addressed by using concentric intensity distributions consisting of core and ring, by affecting melt and metal vapor flow. In this paper, the understanding of spatter formation on sheet top and bottom side is significantly enhanced for full penetration welds of AISI 304. Therefore, different concentric intensities and tophat distributions were systematically studied and compared. Fundamental interactions between concentric intensity distributions and spatter formation during full penetration welding were determined and summarized in model concepts. In particular, spatter formation can be reduced on both sheet sides using a concentric intensity distribution due to a smaller keyhole geometry with a smaller angle of inclination of the keyhole front.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
期刊最新文献
Editorial Preface Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process Machine learning-assisted collection of reduced sensor data for improved analytics pipeline Demand-Oriented Optimization of Machine Tools: a Closed Loop Approach for Safe Exploration in Series Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1