{"title":"制备双功能智能材料:用于电化学检测和光催化降解四环素的 2D-WO3/rGO 纳米复合材料","authors":"Balaji Parasuraman , Sathishkumar Chinnapaiyan , Bhuvaneswari Kandasamy , Paramasivam Shanmugam , Asma A. Alothman , Pazhanivel Thangavelu , Chi-Hsien Huang","doi":"10.1016/j.sna.2024.115873","DOIUrl":null,"url":null,"abstract":"<div><p>The extensive utilization of the antibacterial agent tetracycline (TC) in pharmaceuticals and livestock farming has sparked considerable health apprehensions for the welfare of both animals and humans. The presence of TC drug residues in soil, rivers, lakes, and groundwater further exacerbates these concerns. To address these issues, we synthesized WO<sub>3</sub>/rGO nanocomposites using a simple hydrothermal method and explored their bifunctional catalyst properties for the first time. These nanocomposites were investigated for their potential applications in electrochemical sensing and photocatalytic degradation of TC drug. The electrocatalytic oxidation of TC drug using the WO<sub>3</sub>/rGO/Glassy Carbon Electrode (GCE) nanocomposites demonstrated good sensitivity, low detection limit, low quantification limit and wide linear range of 1.708 µA µM<sup>−1</sup> cm<sup>−2</sup>, 202 nM, 0.202 µM and 0.1–400 µM, respectively. Moreover, we assessed the WO<sub>3</sub>/rGO/GCE nanocomposites effectiveness in detecting TC drug in real samples, including milk, lake water, fish, and tap water, and found the recovery results to be satisfactory. Additionally, the nanocomposites displayed noteworthy photocatalytic activity in degrading the TC drug. The as-prepared WO<sub>3</sub>/rGO nanocomposites exhibited an impressive degradation efficiency of 87.5 % over 120 minutes under UV–visible light irradiation. Radical trapping tests confirmed that the *OH<sup>-</sup> radicals played a significant role in the degradation process. Our study highlights the outstanding electrochemical and photocatalytic properties of WO<sub>3</sub>/rGO nanocomposites, positioning them as highly promising materials for future biomedical and environmental applications.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of dual-functional smart materials: 2D-WO3/rGO nanocomposite for electrochemical detection and photocatalytic degradation of tetracycline\",\"authors\":\"Balaji Parasuraman , Sathishkumar Chinnapaiyan , Bhuvaneswari Kandasamy , Paramasivam Shanmugam , Asma A. Alothman , Pazhanivel Thangavelu , Chi-Hsien Huang\",\"doi\":\"10.1016/j.sna.2024.115873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The extensive utilization of the antibacterial agent tetracycline (TC) in pharmaceuticals and livestock farming has sparked considerable health apprehensions for the welfare of both animals and humans. The presence of TC drug residues in soil, rivers, lakes, and groundwater further exacerbates these concerns. To address these issues, we synthesized WO<sub>3</sub>/rGO nanocomposites using a simple hydrothermal method and explored their bifunctional catalyst properties for the first time. These nanocomposites were investigated for their potential applications in electrochemical sensing and photocatalytic degradation of TC drug. The electrocatalytic oxidation of TC drug using the WO<sub>3</sub>/rGO/Glassy Carbon Electrode (GCE) nanocomposites demonstrated good sensitivity, low detection limit, low quantification limit and wide linear range of 1.708 µA µM<sup>−1</sup> cm<sup>−2</sup>, 202 nM, 0.202 µM and 0.1–400 µM, respectively. Moreover, we assessed the WO<sub>3</sub>/rGO/GCE nanocomposites effectiveness in detecting TC drug in real samples, including milk, lake water, fish, and tap water, and found the recovery results to be satisfactory. Additionally, the nanocomposites displayed noteworthy photocatalytic activity in degrading the TC drug. The as-prepared WO<sub>3</sub>/rGO nanocomposites exhibited an impressive degradation efficiency of 87.5 % over 120 minutes under UV–visible light irradiation. Radical trapping tests confirmed that the *OH<sup>-</sup> radicals played a significant role in the degradation process. Our study highlights the outstanding electrochemical and photocatalytic properties of WO<sub>3</sub>/rGO nanocomposites, positioning them as highly promising materials for future biomedical and environmental applications.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724008677\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008677","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fabrication of dual-functional smart materials: 2D-WO3/rGO nanocomposite for electrochemical detection and photocatalytic degradation of tetracycline
The extensive utilization of the antibacterial agent tetracycline (TC) in pharmaceuticals and livestock farming has sparked considerable health apprehensions for the welfare of both animals and humans. The presence of TC drug residues in soil, rivers, lakes, and groundwater further exacerbates these concerns. To address these issues, we synthesized WO3/rGO nanocomposites using a simple hydrothermal method and explored their bifunctional catalyst properties for the first time. These nanocomposites were investigated for their potential applications in electrochemical sensing and photocatalytic degradation of TC drug. The electrocatalytic oxidation of TC drug using the WO3/rGO/Glassy Carbon Electrode (GCE) nanocomposites demonstrated good sensitivity, low detection limit, low quantification limit and wide linear range of 1.708 µA µM−1 cm−2, 202 nM, 0.202 µM and 0.1–400 µM, respectively. Moreover, we assessed the WO3/rGO/GCE nanocomposites effectiveness in detecting TC drug in real samples, including milk, lake water, fish, and tap water, and found the recovery results to be satisfactory. Additionally, the nanocomposites displayed noteworthy photocatalytic activity in degrading the TC drug. The as-prepared WO3/rGO nanocomposites exhibited an impressive degradation efficiency of 87.5 % over 120 minutes under UV–visible light irradiation. Radical trapping tests confirmed that the *OH- radicals played a significant role in the degradation process. Our study highlights the outstanding electrochemical and photocatalytic properties of WO3/rGO nanocomposites, positioning them as highly promising materials for future biomedical and environmental applications.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.