{"title":"通过账户交易重新配置增强可扩展性和性能优化的分片区块链协议","authors":"Jiaying Wu , Lingyun Yuan , Tianyu Xie , Hui Dai","doi":"10.1016/j.jksuci.2024.102184","DOIUrl":null,"url":null,"abstract":"<div><p>Sharding is a critical technology for enhancing blockchain scalability. However, existing sharding blockchain protocols suffer from a high cross-shard ratio, high transaction latency, limited throughput enhancement, and high account migration. To address these problems, this paper proposes a sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration. Firstly, we construct a blockchain transaction account graph network structure to analyze transaction account correlations. Secondly, a modularity-based account transaction reconfiguration algorithm and a detailed account reconfiguration process is designed to minimize cross-shard transactions. Finally, we introduce a transaction processing mechanism for account transaction reconfiguration in parallel with block consensus uploading, which reduces the reconfiguration time overhead and system latency. Experimental results demonstrate substantial performance improvements compared to existing shard protocols: up to a 34.7% reduction in cross-shard transaction ratio, at least an 83.2% decrease in transaction latency, at least a 52.7% increase in throughput and a 7.8% decrease in account migration number. The proposed protocol significantly enhances the overall performance and scalability of blockchain, providing robust support for blockchain applications in various fields such as financial services, supply chain management, and industrial Internet of Things. It also enables better support for high-concurrency scenarios and large-scale network environments.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102184"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002738/pdfft?md5=107fe417689144e59c75fddd0f5b671f&pid=1-s2.0-S1319157824002738-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration\",\"authors\":\"Jiaying Wu , Lingyun Yuan , Tianyu Xie , Hui Dai\",\"doi\":\"10.1016/j.jksuci.2024.102184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sharding is a critical technology for enhancing blockchain scalability. However, existing sharding blockchain protocols suffer from a high cross-shard ratio, high transaction latency, limited throughput enhancement, and high account migration. To address these problems, this paper proposes a sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration. Firstly, we construct a blockchain transaction account graph network structure to analyze transaction account correlations. Secondly, a modularity-based account transaction reconfiguration algorithm and a detailed account reconfiguration process is designed to minimize cross-shard transactions. Finally, we introduce a transaction processing mechanism for account transaction reconfiguration in parallel with block consensus uploading, which reduces the reconfiguration time overhead and system latency. Experimental results demonstrate substantial performance improvements compared to existing shard protocols: up to a 34.7% reduction in cross-shard transaction ratio, at least an 83.2% decrease in transaction latency, at least a 52.7% increase in throughput and a 7.8% decrease in account migration number. The proposed protocol significantly enhances the overall performance and scalability of blockchain, providing robust support for blockchain applications in various fields such as financial services, supply chain management, and industrial Internet of Things. It also enables better support for high-concurrency scenarios and large-scale network environments.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 8\",\"pages\":\"Article 102184\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002738/pdfft?md5=107fe417689144e59c75fddd0f5b671f&pid=1-s2.0-S1319157824002738-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002738\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002738","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration
Sharding is a critical technology for enhancing blockchain scalability. However, existing sharding blockchain protocols suffer from a high cross-shard ratio, high transaction latency, limited throughput enhancement, and high account migration. To address these problems, this paper proposes a sharding blockchain protocol for enhanced scalability and performance optimization through account transaction reconfiguration. Firstly, we construct a blockchain transaction account graph network structure to analyze transaction account correlations. Secondly, a modularity-based account transaction reconfiguration algorithm and a detailed account reconfiguration process is designed to minimize cross-shard transactions. Finally, we introduce a transaction processing mechanism for account transaction reconfiguration in parallel with block consensus uploading, which reduces the reconfiguration time overhead and system latency. Experimental results demonstrate substantial performance improvements compared to existing shard protocols: up to a 34.7% reduction in cross-shard transaction ratio, at least an 83.2% decrease in transaction latency, at least a 52.7% increase in throughput and a 7.8% decrease in account migration number. The proposed protocol significantly enhances the overall performance and scalability of blockchain, providing robust support for blockchain applications in various fields such as financial services, supply chain management, and industrial Internet of Things. It also enables better support for high-concurrency scenarios and large-scale network environments.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.